Contenidos

El programa tendrá un enfoque teórico-práctico, donde los estudiantes implementarán los conceptos teóricos aprendidos mediante sesiones prácticas diarias. El profesor introduce un nuevo concepto en clase, lo explica y a continuación propone un ejercicio que los tendrán que desarrollar y cuya evaluación se realizará por su parte, en la siguiente sesión práctica.

Módulo 1: Introducción Matemática, Estadística y Programación.

Los alumnos aprenderán los conceptos teóricos y prácticos básicos que deben de servir de base en el curricular de cualquier profesional dedicado al ML y el procesamiento de datos. Esto requiere una base sólida en fundamentos de Matemáticas, Estadística y un conocimiento práctico de cómo implementar estos conceptos en código.

Módulo 2: Machine Learning

A lo largo de estas sesiones, el alumno aprenderá los algoritmos básicos del área del ML, así como su utilidad en el procesamiento y análisis de datos. Esto incluye algoritmos de regresión, clasificación, clusterización y reducción de la dimensionalidad, tanto supervisados como no-supervisados.

Módulo 3: Deep Learning.

Será en las sesiones de este módulo, donde el alumno aprenderá el funcionamiento y la aplicabilidad de los algoritmos más avanzados de ML, aplicados a diferentes áreas. Se estudiará el uso de redes neuronales en ámbitos como el procesamiento de datos estructurados, imágenes, vídeos y audio. Aquí se orientará al alumno no sólo a su uso para el análisis de datos, sino también para el desarrollo de aplicaciones innovadoras que integren la IA.

Seminarios de Data Science.

Para complementar la formación de los estudiantes de cara a un mercado profesional cada vez más demandante de habilidades relacionadas con el procesamiento de datos, se contarán con Seminarios especializados en Data Science impartidos por diferentes expertos de la industria, que aportarán su visión de cómo se aplica estas técnicas en su empresa.

Proyecto final.

Los alumnos desarrollarán un prototipo medianamente funcional de una aplicación que de una solución innovadora a un problema de accesibilidad, haciendo uso de las herramientas de IA vistas durante el curso. Dada la complejidad del desarrollo de estas herramientas, limitado en este caso a sólo 3 semanas del curso, no se buscará un desarrollo de un producto exitoso final, sino un primer acercamiento a una idea que sí sea creativa y de valor en su diseño.

Módulo de accesibilidad.

Los alumnos contarán con formación en principios de accesibilidad que deberán de ser tomados en cuenta a la hora de diseñar aplicaciones y desarrollos tecnológicos que busquen ser accesibles a públicos con diferentes capacidades y dar soluciones de accesibilidad innovadoras.

Módulo de empleabilidad.