Proceso de diseño bioclimático II en Ecomateriales y construcción sostenible

De wiki EOI de documentación docente
Saltar a: navegación, buscar


Estado de desarrollo de la sección: completo completo

Wikilibro: Ecomateriales y construcción sostenible > Capítulo 3: Construcción sostenible

Sección 3

Proceso de diseño bioclimático II
Espacios tapón

Son espacios adosados a la vivienda, de baja utilización, que térmicamente actúan de aislantes o "tapones" entre la vivienda y el exterior. El confort térmico en estos espacios no está asegurado, puesto que, al no formar parte de la vivienda propiamente dicha (el recubrimiento aislante no los incluirá), no disfrutarán de las técnicas adecuadas de climatización, pero como son de baja utilización, tampoco importa mucho. Pueden ser espacios tapón el garaje, el invernadero, el desván... Este último es importante que exista. La colocación adecuada de estos espacios puede acarrear beneficios climáticos para la vivienda.

  • El garaje. No importa mucho que en el garaje haga frío o haga calor, a menos que se disponga de un pequeño taller muy frecuentado en el mismo. En este caso, debido a la mayor actividad física por los trabajos propios del taller, no importará que haga algo más frío que en el resto de la casa en invierno, pero sí importará el calor. Cada uno debe evaluar para qué va a utilizar este espacio. Para aprovechar su aislamiento, se puede colocar en la fachada norte (más fría en invierno), o en la fachada oeste (donde el sol del atardecer de verano castiga de forma especial).
  • El desván. La tentación de tener un espacio abuhardillado donde estudiar, dormir, etc. es muy fuerte. se aconsejo que la buhardilla sea un espacio de baja ocupación (trastero, observatorio, etc.) sin aislamiento (el aislamiento deberá colocarse bajo el suelo de la misma), que funcione como espacio tapón. Habrá unos registros de ventilación en la parte alta y en la parte baja. En invierno los registros estarán cerrados, y la buhardilla disminuirá de forma importante las pérdidas de calor a través del techo. En verano, los registros se abrirán para que la convección forzada (ver Ventilación) refresque este espacio, evitando que se convierta en un horno y protegiendo al resto de la casa del calor del tejado.
19 Espacios tapón.jpg

Aprovechamiento climático del suelo

La elevada inercia térmica del suelo provoca que las oscilaciones térmicas del exterior se amortigüen cada vez más según la profundidad. A una determinada profundidad, la temperatura permanece constante (es por eso que el aire del interior de las cuevas permanece a una temperatura casi constante e independiente de la temperatura exterior). La temperatura del suelo suele ser tal que es menor que la temperatura exterior en verano, y mayor que la exterior en invierno, con lo que siempre se agradece su influencia. Además de la inercia térmica, una capa de tierra puede actuar como aislante adicional.

20 Aprovechamiento climático.jpg

Las cuevas siempre fueron utilizadas como protección frente a las inclemencias del tiempo; los sótanos han sido conocidos siempre por su frescor del verano, pero las dos grandes desventajas del enterramiento, la ausencia de luz y la alta humedad relativa, han hecho que cualquier idea de habitar bajo suelo sea infravalorada. Sin embargo, nuevos diseños pretenden aprovechar los efectos climáticos del suelo sin suponer una merma de iluminación y controlando la humedad.

Una idea interesante puede ser que ciertas fachadas de la casa estén enterradas o semienterradas. Por ejemplo, si se construye la casa en una pendiente orientada al sur, se puede construir de tal manera que la fachada norte esté parcialmente enterrada, o enterrarla totalmente e incluso echar una capa de tierra sobre el techo (que será plano). La luz entrará por la fachada sur y, si fuera necesario, se pueden abrir claraboyas para la iluminación de las habitaciones más interiores.

Para aprovechar la temperatura del suelo, se pueden enterrar tubos de aire (conductos canadienses), de tal manera que este aire acaba teniendo la temperatura del suelo. Se puede introducir en la casa bombeándolo con ventiladores o por convección.

20b Aprovechamiento climático.jpg

21 Aljibe.jpg


Protección contra la radiación de verano

Es evidente que en verano hay que reducir las ganancias caloríficas al mínimo. Ciertas técnicas utilizadas para el invierno (aislamiento, espacios tapón) contribuyen con igual eficacia para el verano. Otras técnicas, como la ventilación, ayudan casi exclusivamente en verano. Sin embargo, los sistemas de captación solar pasiva, tan útiles en invierno, son ahora perjudiciales, por cuanto es necesario impedir la penetración de la radiación solar, en vez de captarla.

22 Protección radiación.jpg

Afortunadamente, en verano el sol está más alto que en invierno, lo cual dificulta su penetración en las cristaleras orientadas al sur. La utilización de un alero o tejadillo sobre la cristalera dificulta aún más la penetración de la radiación directa, afectando poco a la penetración invernal. También el propio comportamiento del vidrio nos beneficia, porque con ángulos de incidencia de la radiación más oblicuos, el coeficiente de transmisión es menor. A pesar de estos beneficios, contamos con tres inconvenientes:

  • El solsticio de verano (21 de junio) no coincide exactamente con los días más calurosos del verano (segunda quincena de julio y primera de agosto). Esto significa que, cuando llega el calor fuerte, el sol ya está algo más bajo en el cielo y puede penetrar mejor por la cristalera sur.
  • El día tiene mayor duración (hay más horas de sol) y los días son más despejados que en el invierno
  • Aunque evitemos la llegada de la radiación directa, hay que considerar también la radiación difusa y reflejada, lo que puede suponer ganancias caloríficas apreciables.

Para resolver este problema, tomamos como ejemplo una vivienda en Cáceres y estimamos distintas soluciones de protección de la radiación solar.

Se estima que la radiación recibida por una fachada sur en Cáceres es de 2,43 Kwh./m2 en enero y de 4,56 Kwh./m2 en Agosto, por término medio. Esto significa que necesitamos dispositivos de sombreamiento que impidan a esta radiación llegar hasta nuestra cristalera.

  • Alero fijo, con unas dimensiones adecuadas que impidan algo la penetración solar en verano y no estorben mucho en invierno.

Para hacerse una idea, un tejadillo situado a 0,5 m por encima de la cristalera, y con 1,3 m de anchura, en Cáceres, si la cristalera tiene 2 m de alto, hace que la radiación solar incidente sea de 2,24 Kwh./m2 en enero (8% menor que sin alero) y de 2,71 Kwh./m2 en agosto (41% menor), en promedio.

  • Toldos y otros dispositivos externos, cuya ventaja es que son ajustables a las condiciones requeridas. Un ejemplo serían persianas exteriores. Las persianas enrollables sirven perfectamente para interceptar la radiación.
  • Contraventanas. Son más efectivas, pero quizá bloquean demasiado la luz.
  • Alero con vegetación de hoja caduca. Debe ser más largo que el alero fijo y con un enrejado que deje penetrar la luz. Tiene la ventaja de que las hojas se caen en invierno, dejando pasar la luz a través del enrejado, mientras que en verano las hojas lo hace opaco. El ciclo vital de las plantas de hoja caduca coincide mejor con el verano real que con el solsticio de verano, con lo que no tenemos el inconveniente que comentábamos con el alero fijo.
  • Árboles. Podemos utilizar varias estrategias. Por una parte, cualquier tipo de árbol, colocado cerca de la zona sur de la fachada, refrescará el ambiente por evapotranspiración. Por otra parte, podemos buscar que el árbol sombree la fachada sur e incluso parte del tejado, si es suficientemente alto, pero debemos evitar que su sombra nos afecte en invierno. Para conseguirlo, si el árbol es suficientemente alto y está suficientemente cerca, en invierno, al estar el sol más bajo, la única sombra que se proyectará sobre la fachada sur será la del tronco, mientras que en verano, será la sombra de la copa del árbol la que se proyecte sobre la fachada sur y parte del tejado. Por otra parte, un árbol de hoja caduca nos da mayor flexibilidad en cuanto a su posición relativa respecto de la casa, porque en invierno nunca podrá proyectar la sombra de una copa maciza.

23 Arboles.jpg

Algunas de las técnicas anteriores son válidas en general para proteger también muros, y no sólo cristaleras, aunque quizá las mejores técnicas en este caso sean el disponer plantas trepadoras sobre los muros y el utilizar colores poco absorbentes de la luz solar (colores claros, especialmente el blanco). Los espacios tapón también protegen eficazmente (desván, garaje).

Las fachadas Este (al amanecer) y Oeste (al atardecer), así como la cubierta (durante todo el día), también están expuestas a una radiación intensa en verano. Se procurará que en estas zonas haya pocas aberturas (ventanas y claraboyas), o que sean pequeñas, puesto que no tienen utilidad para ganancia solar invernal, aunque se las puede necesitar para ventilación o iluminación. Si hay que proteger el muro, se pueden utilizar las técnicas comentadas anteriormente.

24 Encalado.jpg

25 Técnicas de protección.jpg

25b Técnicas de protección.jpg


Sistemas evaporativos de refrigeración

La evaporación de agua refresca el ambiente. Si utilizamos la energía solar para evaporar agua, paradójicamente estaremos utilizando el calor para refrigerar. Hay que tener en cuenta que la vegetación, durante el día, transpira agua, refrescando también el ambiente. Varias ideas son practicables. En un patio, una fuente refrescará esta zona que, a su vez, puede refrescar las estancias colindantes. El efecto será mejor si hay vegetación. La existencia de vegetación y/o pequeños estanques alrededor de la casa, especialmente en la fachada sur, mejorará también el ambiente en verano. Sin embargo hay que considerar dos cosas: por una parte, un exceso de vegetación puede crear un exceso de humedad que, combinado con el calor, disminuirá la sensación de confort, por otra, en invierno habrá también algo más de humedad. De cualquier manera, en climas calurosos, suele ser conveniente casi siempre el uso de esta técnica.

El riego esporádico alrededor de la casa, o la pulverización de agua sobre fachadas y tejado, también refrescará la casa y el ambiente.

26 Sistemas evaporativos.jpg

26b Sistemas evaporativos.jpg

< Sección anterior
Proceso de diseño bioclimático