

Diseño de una IDAM de gran capacidad. Incorporación de últimos avances tecnológicos.

Máster en Ingeniería y Gestión del Agua

Curso 2012-2013

TUTOR:

Aitor Díaz Pérez

COMPONENTES:

Ernesto Madero Ceña

Mario Quintana Aroca

Juan José Romero Añover

Esta publicación está bajo licencia Creative Commons Reconocimiento, Nocomercial, Compartirigual, (bync-sa). Usted puede usar, copiar y difundir este documento o parte del mismo siempre y cuando se mencione su origen, no se use de forma comercial y no se modifique su licencia. Más información: http://creativecommons.org/licenses/by-nc-sa/3.0/

Índice

ÍNDICE	2
ÍNDICE DE TABLAS Y FIGURAS	4
1 INTRODUCCIÓN	7
1.1 ¿POR QUÉ UNA DESALADORA EN ISRAEL?	7
2 OBJETIVO Y DATOS DE PARTIDA	9
2.1 OBJETIVO	9
2.2 CARACTERÍSTICAS DEL AGUA PRODUCTO	9
2.3 CALIDAD DEL AGUA BRUTA	10
3 DESCRIPCIÓN GENERAL	11
3.1 DATOS BÁSICOS DE DISEÑO	12
4 CAPTACIÓN	14
4.1 DISEÑO	14
5 FILTROS DE ANILLAS	15
5.1 MODO FILTRACIÓN	15
5.2 MODO CONTRALAVADO	16
6 ULTRAFILTRACIÓN	17
6.1 DESCRIPCIÓN DE LOS LAVADOS	20
7 TRATAMIENTOS QUÍMICOS	23
7.1 DESINFECCIÓN	25
7.2 COAGULACIÓN - FLOCULACIÓN	26
7.3 REDUCCIÓN DE OXIDANTES	27
7.4 Antiincrustantes	28
7.5 REGULACIÓN DEL PH	30
8 ÓSMOSIS INVERSA	31
8.1 DATOS GENERALES DE DISEÑO	31
8.2 CAUDALES	31
8.3 CONFIGURACIÓN EN DOS TRENES	34
8.4 DISEÑO DETALLADO ÓSMOSIS INVERSA	34
8 5 SIMILLACIONES	37

9 BOMBEOS	38
9.1 BOMBEO A DEPÓSITO DE AGUA BRUTA	38
9.2 Bombeo a baja presión	38
9.3 Bombeo de alta presión	39
9.4 BOMBAS BOOSTER	40
9.5 BOMBAS DE AGUA PRODUCTO	41
9.6 TABLA DE POTENCIAS	41
10 SISTEMA DE RECUPERACIÓN DE ENERGÍA - ERI	43
10.1 EXPLICACIÓN DEL PROCESO	44
10.2 RECUPERADORES ROTATIVOS	45
10.3 DISEÑO ERI	46
10.4 MANTENIMIENTO	46
11 REMINERALIZACIÓN	46
11.1 Datos generales de diseño	46
11.2 DIMENSIONAMIENTO	47
12 VERTIDO	49
12.1 IMPACTO AMBIENTAL A CONSIDERAR	49
12.2 VERTIDO DE SALMUERA	50
13 ESTUDIO DE EXPLOTACIÓN	52
13.1 HIPÓTESIS INICIALES	52
13.2 Costes fijos	53
13.3 Costes variables	57
13.4 COSTE TOTAL DE EXPLOTACIÓN	60
14 ANÁLISIS COMPARATIVO DEL USO DE CENTROS DE PRESIÓN (COMMON RAIL)	63
15 REFERENCIAS	69

Índice de tablas y figuras

TABLA T: CRECIMIENTO DEMOGRAFICO ISRAEL	/
Tabla 2: Características del agua producto	9
FIGURA 3: CONFIGURACIÓN EN DOS TRENES	11
TABLA 4: RESUMEN PLANTA	12
TABLA 5: RESUMEN PLANTA	12
FIGURA 6: ESQUEMA DE UTILIZACIÓN DE REACTIVOS DE LA PLANTA	13
FIGURA 7: TORRES DE TOMA	14
FIGURA 8: FILTROS DE ANILLAS GALAXY SKS 10"	15
FIGURA 9: MODO FILTRACIÓN	15
FIGURA 10: MODO CONTRALAVADO	16
TABLA 11: CARACTERÍSTICAS DE LOS FILTROS DE ANILLAS	16
FIGURA 12: ESPECTRO DE FILTRACIÓN	17
FIGURA 13: DETALLE BASTIDOR DE MEMBRANAS	18
Tabla 14: Parámetros de diseño ultrafiltración	18
FIGURA 15: DETALLE MEMBRANAS UF	19
FIGURA 16: ESQUEMA DE OPERACIÓN DEL SISTEMA DURANTE LA PRODUCCIÓN	19
FIGURA 17: ESQUEMA DE OPERACIÓN DEL SISTEMA DURANTE EL CONTRALAVADO CON AGUA Y AIRE	20
FIGURA 18: ESQUEMA DE OPERACIÓN DEL SISTEMA DURANTE EL CONTRALAVADO QUÍMICO	21
FIGURA 19: ESQUEMA DE OPERACIÓN DEL SISTEMA DURANTE EL CONTRALAVADO QUÍMICO	22
FIGURA 20: ESQUEMA DE UTILIZACIÓN DE REACTIVOS DE LA PLANTA	24
TABLA 21: DATOS DOSIFICACIÓN HIPOCLORITO SÓDICO	25
TABLA 22: DATOS DOSIFICACIÓN CLORURO FÉRRICO	27
TABLA 23: DATOS DOSIFICACIÓN BISULFITO SÓDICO	28
TABLA 24: DATOS DOSIFICACIÓN ANTIINCRUSTANTES	29
TABLA 25: DATOS DOSIFICACIÓN HIDRÓXIDO SÓDICO	30
TABLA 26: DISEÑO ÓSMOSIS INVERSA: CONFIGURACIÓN EN DOS PASOS	31
FIGURA 27: ESQUEMA DE OI	31
Tabla 28: Caudales Ósmosis Inversa	32
TABLA 29: CAUDALES PRIMER PASO ÓSMOSIS INVERSA	32
FIGURA 30: ESQUEMA DE OPERACIÓN DEL PRIMER PASO DE OI	33
TABLA 31: FLUJOS DEL PRIMER PASO DE OI	33
TABLA 32: CAUDALES SEGUNDO PASO ÓSMOSIS INVERSA	33
TABLA 33: CONFIGURACIÓN EN DOS TRENES	34
TABLA 34: PARÁMETROS DE DISEÑO PRIMER PASO ÓSMOSIS INVERSA	35
TABLA 35: PRESIÓN PRIMER PASO ÓSMOSIS INVERSA	35

TABLA 36: PARAMETROS DE DISENO SEGUNDO PASO OSMOSIS INVERSA	36
TABLA 37: PRESIONES SEGUNDO PASO ÓSMOSIS INVERSA	36
FIGURA 38: ESQUEMA SEGUNDO PASO OI	36
TABLA 39: SIMULACIONES ÓSMOSIS INVERSA	37
TABLA 40: DATOS BOMBEO AGUA BRUTA	38
Tabla 41: Datos tuberías	38
TABLA 42: DATOS BOMBEO A BAJA PRESIÓN	38
TABLA 43: DATOS BOMBEO A ALTA PRESIÓN PASO 1	40
TABLA 44: DATOS BOMBEO A ALTA PRESIÓN PASO 2	40
TABLA 45: DATOS BOMBEO BOOSTER	40
TABLA 46: TABLA DE POTENCIAS	42
FIGURA 47: DETALLE SISTEMA DE RECUPERACIÓN DE ENERGÍA	44
FIGURA 48: DIAGRAMA DE UN SISTEMA DE RECUPERACIÓN DE ENERGÍA	44
FIGURA 49: RECUPERADORES ROTATIVOS	45
Tabla 50: Datos diseño ERI	46
TABLA 51: CONDICIONANTES INICIALES LECHOS DE CALCITA	47
TABLA 52: NÚMERO DE CELDAS EN LECHOS DE CALCITA	48
TABLA 53: ALTURA EN LECHOS DE CALCITA	48
FIGURA 54: DIFUSORES PARA EL VERTIDO DE LA SALMUERA	51
TABLA 55: HIPÓTESIS INICIALES DEL ESTUDIO DE EXPLOTACIÓN	52
TABLA 56: NECESIDADES DE PERSONAL	53
TABLA 57: COSTE DE PERSONAL DESGLOSADO	53
TABLA 58: COSTE DE PERSONAL	53
TABLA 59: INVERSIÓN INICIAL EN EQUIPOS MECÁNICOS, ELÉCTRICOS Y OBRA CIVIL	54
TABLA 60: COSTE DE MANTENIMIENTO Y CONSERVACIÓN DE LA INSTALACIÓN	54
TABLA 61: COSTE DE REPOSICIÓN DE MATERIAL FUNGIBLE	54
TABLA 62: COSTE FIJO DE REPOSICIÓN DE MEMBRANAS DE PRIMER PASO DE OI	54
TABLA 63: COSTE FIJO DE REPOSICIÓN DE MEMBRANAS DE SEGUNDO PASO DE OI	55
TABLA 64: COSTE FIJO DE REPOSICIÓN DE MEMBRANAS DE UF	55
TABLA 65: COSTE DE ADMINISTRACIÓN Y VARIOS	55
TABLA 66: COSTE DEL PLAN DE VIGILANCIA AMBIENTAL	55
TABLA 67: COSTE DE SEGUROS	56
TABLA 68: COSTE DE ANÁLISIS DE LABORATORIO	56
TABLA 69: COSTE DEL TÉRMINO DE FIJO DE POTENCIA	56
TABLA 70: RESUMEN DE GASTOS FIJOS	56
TABLA 71: COSTE DE REACTIVOS QUÍMICOS	58
TABLA 72: COSTE DE REPOSICIÓN DE MATERIAL FUNGIBLE	58

TABLA 73: COSTE DE REPOSICIÓN DE MATERIAL FUNGIBLE	58
TABLA 74: COSTE VARIABLE DE REPOSICIÓN DE MEMBRANAS DE PRIMER PASO DE OI	59
TABLA 75: COSTE VARIABLE DE REPOSICIÓN DE MEMBRANAS DE SEGUNDO PASO DE OI	59
TABLA 76: COSTE FIJO DE REPOSICIÓN DE MEMBRANAS DE UF	59
TABLA 77: COSTES ENERGÉTICOS VARIABLES	59
TABLA 78: RESUMEN DE COSTES VARIABLES	60
TABLA 79: RESUMEN DE COSTES DE EXPLOTACIÓN SIN INCLUIR ENERGÍA	60
TABLA 80: RESUMEN DE COSTES TOTALES CON ENERGÍA	60
TABLA 81: DISTRIBUCIÓN DE COSTES	61
TABLA 82: RESUMEN DE COSTES DE EXPLOTACIÓN	61
FIGURA 83: DISTRIBUCIÓN DE COSTES DE EXPLOTACIÓN	62
FIGURA 84: CONFIGURACIÓN DE PRIMER PASO DE OI CONVENCIONAL (SIN CENTROS DE PRESIÓN)	63
FIGURA 85: CONFIGURACIÓN DE PRIMER PASO DE OI UTILIZANDO CENTROS DE PRESIÓN (COMMON RAIL)	64
FIGURA 86: BOMBAS DE ALTA PRESIÓN	64
TABLA 87: COMPARATIVO TABLA DE POTENCIAS (SIN CENTRO DE PRESIÓN)	66
TABLA 88: COMPARATIVO TABLA DE POTENCIAS (CON CENTRO DE PRESIÓN)	67
TABLA 80. COMPARATIVO COSTES VARIARIES Y COSTES DE EVRLOTACIÓN	60

1 INTRODUCCIÓN

El agua es el recurso indispensable para la vida, y en especial en Israel donde las fuentes de agua son limitadas y el problema del abastecimiento de agua es uno de los más severos que tiene que afrontar el Estado.

Israel es un referente internacional en los campos de la utilización eficiente de agua, así como por su gran calidad de los sistemas tecnológicos desarrollados alrededor del agua. Sin embargo, el balance de agua en Israel muestra un constante déficit a través de los años. Teniendo en cuenta otras demandas regionales, la desalación del agua de mar constituye casi la solución única para Israel y sus países vecinos.

El proceso de desalación seleccionado para el este proyecto es la ósmosis inversa en dos pasos con sistema de recuperación energética del rechazo en primer paso.

La capacidad de producción se fija en 384.000 m3/día.

1.1 ¿Por qué una desaladora en Israel?

Se ha determinado el proyecto en Israel por diferentes motivos:

- 1. Escasez constante de agua natural. Los recursos hídricos son escasos, limitados y se encuentran en continuo descenso
- 2. Falta de precipitaciones. Debido sobre todo al cambio climático las lluvias en Israel han descendido en los últimos años.
- 3. Consumo doméstico. El volumen de consumo doméstico para uso público e industrial alcanza los 800-900 Mm³/año
- 4. Crecimiento de la población. El continuo aumento de la población ha incrementado significativamente la demanda de agua

Año	2005	2006	2007	2008	2009	2010	2011	2012	2013
Población	6.990	7.116	7.243	7.412	7.552	7.695	7.836	7.928	8.002
Incremento	-	2%	1,70%	2%	1,90%	1,90%	1,80%	1,17%	1%

Tabla 1: Crecimiento demográfico Israel

El agua desalada se usa como fuente principal para varios fines principalmente industrial, consumo humano y agrónomo.

Las principales desaladoras del país son:

- Shomrat
- Haifa Bay
- Hadera
- Sorek (en construcción)
- Palmachim (en proceso de ampliación)
- Eilat
- Ashdod
- Ashkelon

Existe un Plan Maestro de Desalinización en Israel [1] cuyo objetivo en 2020 es asegurar el abastecimiento de agua potable en cantidad y calidad suficiente en aquellas regiones que así lo requieran. Este Plan deberá garantizar la continuidad del suministro de una forma sostenible.

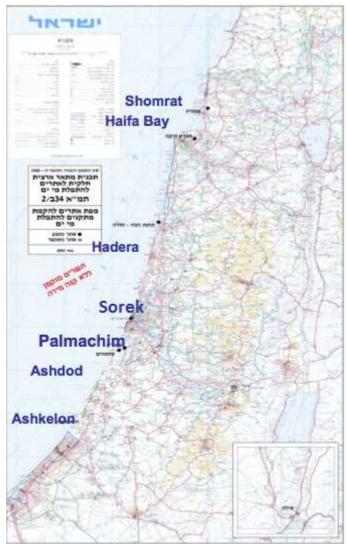


Figura 1: Desaladoras en Israel

2 OBJETIVO Y DATOS DE PARTIDA

2.1 Objetivo

El objetivo de este proyecto es el diseño, dimensionamiento, suministro, instalación, puesta en marcha y mantenimiento de una instalación desaladora de agua de mar con una capacidad de producción de 384.000 m³/día, con el fin de proporcionar grandes cantidades de agua potable a la población. También se realizará un análisis comparativo de la planta utilizando centros de presión. Todo ello con el propósito de conseguir una planta eficiente energéticamente e innovadora, usando las más nuevas tecnologías en el mundo de la desalación.

2.2 Características del agua producto

Los requerimientos del agua producto se resumen en la siguiente tabla:

Parámetro	Valor máximo
Boro - B (ppm)	0,5
Cloruros - Cl (ppm)	50
Sólidos totales disueltos (ppm)	300
рН	7,8 - 8,5
Índice de Langelier	0 - 0,5
Dureza - como CaCO ₃ (ppm)	80 - 120
Turbidez - NTU	0,5

Tabla 2: Características del agua producto

2.3 Calidad del agua bruta

La analítica del agua de mar utilizada para el diseño de la planta es la siguiente:

Parámetros	Valor
Alcalinidad como CaCO ₃ (ppm)	134
Sólidos disueltos - 180°C (ppm)	40,360
Cloruros - Cl (ppm)	22,157
Nitratos - NO₃ (ppm)	<1
Fluoruros - F (ppm)	1,5
Bicarbonato - HCO₃ (ppm)	163,35
Sulfatos - SO ₄ (ppm)	3.056
Bromuros - Br (ppm)	89
Amonio - NH₄ (ppm)	0,12
Sodio - Na (ppm)	12,020
Potasio - K (ppm)	671
Calcio - Ca (ppm)	442
Magnesio - Mg (ppm)	1.499
Dureza como CaCO₃ (ppm)	7.270,7
Fosfatos - PO ₄ (ppm)	0,01
Dióxido de silicio - SiO ₂ (ppm)	1
Boro - B (ppm)	5,3
Atrazina (µg/l)	0,21
Simazina (µg/l)	0,07

Parámetros	Valor
Hierro - Fe (µg/l)	31
Cobre - Cu (µg/l)	20
Manganeso - Mn (µg/l)	<3
Bario - Ba (µg/l)	6
Aluminio - Al (µg/l)	20
Zinc - Zn (µg/l)	16
Estroncio - Sr (µg/l)	6.362
C.O.T. (ppm)	1,9
S.S 105 °C (ppm)	<10
S.S 550 °C (ppm)	<8
Bacterias totales (cfu/ml)	<3.500
Coliformes totales (cfu/100ml)	<15
Coliformes fecales (cfu/100ml)	<10
Turbidez - NTU	<5
SDI (15 min)	>6,5
pH (°C)	8,1-8,2
Temperatura	18-30
Metazacloro (μg/l)	0,96
Pesticidas totales (µg/l)	2,33

3 DESCRIPCIÓN GENERAL

El agua bruta es captada mediante dos torres de toma abierta en el lecho marino y es conducida a una cámara de captación donde es bombeada por 7 bombas a un depósito común. Una vez allí, el agua se divide en dos trenes y comienza el pretratamiento químico mediante la dosificación de distintos compuestos. Posteriormente es filtrada mediante filtros de anillas y un proceso de ultrafiltración, mejorando la calidad del agua producto y garantizando la total protección de las membranas de ósmosis inversa.

Una vez finalizado el pretratamiento, mediante un bombeo de alta presión por medio de 28 bombas se impulsa el agua a través de los bastidores de ósmosis inversa. El paso total por el proceso de ósmosis inversa consta de 28 líneas, 14 por tren, para el primer paso, donde además consta de un sistema de recuperación energético tipo ERI (Energy Recovery Inc.) y de 14 líneas, 7 por tren, para el segundo paso.

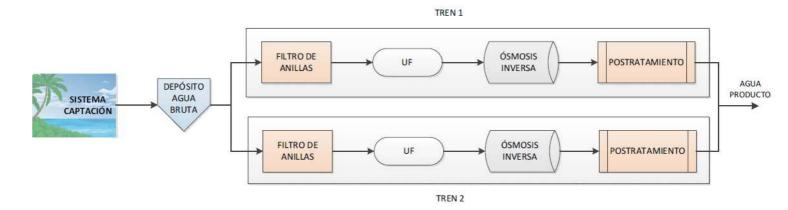


Figura 3: Configuración en dos trenes

El permeado o agua producto es finalmente tratada por un proceso de remineralización que consiste en corregir tanto el pH como el equilibrio cálcico - carbónico, dosificando CaCO3 y CO2, para que cumpla la normativa aplicable y se garantice su calidad para su uso como agua potable.

El agua rechazo o salmuera es conducida a través de un emisario submarino y devuelta al mar mediante un sistema de difusores.

3.1 Datos básicos de diseño

La siguiente tabla muestra los principales aspectos considerados para el diseño de la planta que se justificarán a lo largo del presente documento:

Caracter	Valores	
Producción de la planta	384.000 m³/día	
Número de pasos		2
Número de etapas	Primer paso Segundo paso	1 2
Split variable	Máximo Mínimo	8 % 30 %
Factor de conversión Primer paso Segundo paso		45 % 90 %
Tipo captación	Toma abierta	
Pretratamiento físico	A la OI A la ultrafiltración	Ultrafiltración Filtros de anillas
Pretratamiento químico	Dosificación químicos Postratamiento	NaClO, FeCl ₃ , Na ₂ S ₂ O ₅ , NaOH, Antiincrustante CaCO ₃ , CO ₂
Remineralización	Lechos de calcita	

Tabla 4: Resumen planta

La planta se dividirá en dos trenes simétricos de producción para facilitar la explotación y diseño, y al mismo tiempo garantizar el funcionamiento de al menos una parte ante un posible incidente.

3.1.1 Resumen de caudales

	m3/h	m3/d
Caudal alimentado a la planta	39.912	957.881
Caudal alimentado ultrafiltración	39.513	948.302
Caudal alimentado ósmosis inversa	37.537	900.887
Caudal neto de Ól producido	16.000	384.000

Tabla 5: Resumen planta

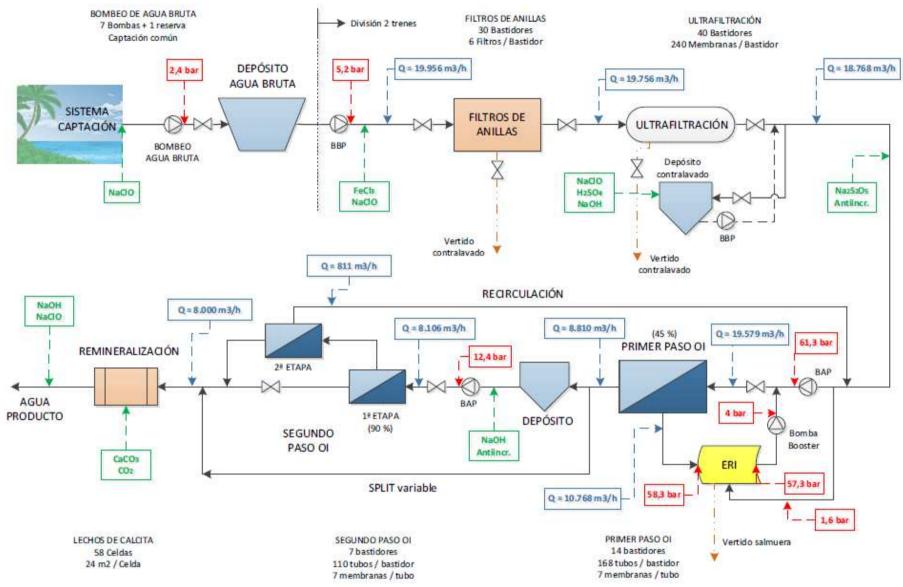


Figura 6: Esquema de utilización de reactivos de la planta

4 CAPTACIÓN

Los objetivos principales que se persiguen con la captación de agua de mar son:

- 1. Garantizar un caudal suficiente para la producción prevista.
- 2. Conseguir la mayor calidad de agua desde el inicio para reducir lo máximo posible en costes de tratamiento posteriores.
- 3. Minimizar las posibles variaciones del agua bruta para conseguir una continuidad en el tratamiento y por consiguiente una garantía de suministro.
- 4. Minimizar los posibles impactos medioambientales tanto en la construcción de la captación como en su futura explotación (velocidades de aproximación del agua a las rejas)

4.1 Diseño

La captación se realiza mediante dos torres de toma situadas a 1500 metros de la costa y sobre un fondo rocoso o de arenas gruesas, para minimizar la entrada de sustancias sedimentables y la presencia de algas. El punto de entrada de agua a la torres se encuentra a 4 m sobre el fondo marino.

Las torres se diseñan de forma que las líneas de corriente del agua captada sean horizontales, además, para evitar la inmovilización y reducir el arrastre de los peces, la velocidad de aproximación a las rejas debe ser inferior a 0,15 m/s y el flujo totalmente laminar.

Figura 7: Torres de toma

Existe un sistema de dosificación de hipoclorito en las torres de toma así como un sistema de inyección de aire a presión para evitar la entrada de peces, algas y medusas a las torres de toma.

Una vez el agua llega a la costa, es captada por una cámara de captación y posteriormente bombeada a un depósito de agua bruta desde donde partirán los dos trenes.

5 FILTROS DE ANILLAS

Los filtros de anillas son sistemas de filtración que se utilizan como pretratamiento de ultrafiltración previas a la ósmosis inversa ya que prácticamente no eliminan turbidez y no realizan una filtración en profundidad.

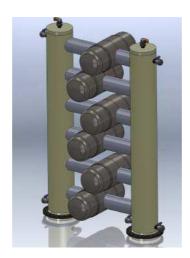


Figura 8: Filtros de anillas Galaxy SKS 10"

5.1 Modo filtración

Durante el proceso de filtración las anillas que se encuentran en su interior están fuertemente comprimidas en forma conjunta por el resorte y la presión diferencial, de esta forma se fuerza al agua a fluir a través de los canales que se forman entre las anillas ranuradas.

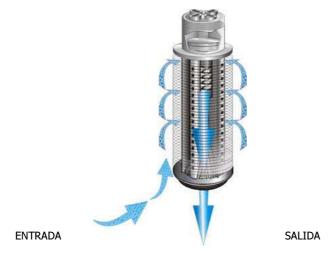


Figura 9: Modo filtración

5.2 Modo contralavado

Durante el contralavado se forma una contrapresión que provoca que el pistón suba y libere las anillas comprimidas. En forma simultánea, múltiples boquillas inyectan chorros tangenciales sobre las anillas liberadas, provocando que giren y liberen los sólidos retenidos, los que son derivados hacia el exterior a través del drenaje, este proceso se realiza con agua limpia filtrada, o con agua externa en los casos en los que se considere necesario o más rentable.

Figura 10: Modo contralavado

Las características de los filtros de anilla utilizados se muestran a continuación:

Caudal de entrada a UF	948.302,03 m3/día
Pérdidas	1,00%
Caudal de entrada F.Anillas	957.880,84 m3/día
Caudal de entrada F.Anillas	39.991,70 m3/h
Tipo de filtro	GALAXY SKS 10''
N° Filtros por bastidor	6 uds
Flujo diseño	1320 m3/h
N° bastidores	30,24 bastidores
N° bastidores adoptado	30 bastidores
N° total filtros	180 filtros
Superficie de filtrado	14.080 cm2/filtro
Superficie de filtrado total	2.534.400 cm2
Pérdida de carga	0,5 bar

Tabla 11: Características de los filtros de anillas

6 ULTRAFILTRACIÓN

La ultrafiltración es un proceso físico de separación de partículas, donde el agua y algunos solutos pasan a través de una serie de membranas por efecto de una presión hidrostática.

Con la operación de ultrafiltración se consigue eliminar materia en suspensión, macromoléculas de gran tamaño, materia coloidal o microorganismos, pero sin embargo no es posible eliminar iones o materia disuelta como ocurre en la ósmosis inversa. Por tanto su misión en la línea de proceso es la protección de las membranas de ósmosis inversa, y preservar el buen estado de las mismas para que funcionen de manera adecuada la mayor cantidad de tiempo posible.

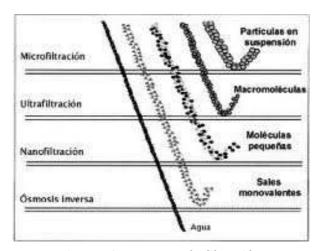


Figura 12: Espectro de filtración

Durante la etapa de filtración el agua a tratar es bombeada a través de la membrana (en sentido de fuera a dentro de las fibras huecas). El agua producto se recoge por tanto en el interior de las fibras y abandona el módulo a través del colector de permeado. Durante la etapa de filtración el puerto de concentrado permanece cerrado, por lo tanto los módulos trabajan en modo de final ciego (el 100 % del agua de alimentación es convertida en filtrado). Dependiendo del tipo de aplicación y de la calidad del agua de alimentación, la duración del ciclo de filtración varía de 20 a 60 minutos.

El uso de la ultrafiltración ofrece una serie de ventajas respecto a los tratamientos convencionales, lo que añadido a la progresiva reducción de costes y estandarización de los elementos por parte de los fabricantes, hacen que cada día su implantación en plantas desaladoras sea más habitual:

- Ahorro en la superficie del pretratamiento físico.
- Mejora significativa de la calidad de agua producto, eliminando el 100 % de los coloides.
- Calidad del agua producto estable e independiente de las variaciones en la del agua de alimentación.
- Reducción en el consumo de reactivos químicos.

- Incremento en la eficiencia de la ósmosis inversa, reduciendo costes de implantación y operación y permitiendo que la ósmosis actúe a su máxima capacidad.
- Reducción de la presión necesaria de funcionamiento respecto a pretratamientos convencionales.

El agua procedente de la cántara de captación, tras ser prefiltrada en los filtros de anillas, pasará a las membranas de ultrafiltración, donde será filtrada de nuevo para conseguir las condiciones que requieren las membranas de ósmosis.

El diseño de la unidad de ultrafiltración se realiza teniendo en cuenta el máximo caudal necesario para la entrada de la OI, más un caudal adicional utilizado en el lavado de las membranas de ultrafiltración (los lavados se realizan con agua ultrafiltrada). Este caudal se ha estimado en un 5% del caudal necesario para alimentar la OI y se almacenará en 2 depósitos, uno por tren. Cabe mencionar que estos sistemas también requieren limpiezas químicas periódicas para restaurar las membranas.

Figura 13: Detalle bastidor de membranas

Se han elegido las membranas del modelo Hydracap 60, de la casa comercial Hydranautics, cuyas características se representan en siguiente tabla:

ULTRAFILTRACIÓN				
Caudal entrada a OI	900,887 m³/día			
Caudal de lavado ultrafiltración	5%			
Caudal de diseño	948.302 m³/día			
Caudal de diseño	39.512 m³/hora			
Flujo de diseño	90 l/m²*h			
Superficie membranas	46 m²			
Número membranas	9.545 uds.			
Número de trenes	2			
Número de skids	20 / tren			
Número de membranas	240 / skid			

Tabla 14: Parámetros de diseño ultrafiltración

Estas membranas son muy buenas para tratamiento de agua de mar, y permiten operar con mayores flujos los sistemas de ósmosis inversa y de UF, aumentando los intervalos entre lavados. Éstas se pueden encontrar comercialmente en varias configuraciones, siendo la escogida para instalar en esta planta las membranas capilares de fibra hueca, debido a su alta compacidad y su gran capacidad para ser lavadas hidráulicamente en sentido contrario al de filtración. Su diámetro capilar es de 0,8 mm.

Figura 15: Detalle membranas UF

Estas membranas trabajarán de tal manera que el agua de alimentación fluye desde el interior de la fibra hasta el exterior, y el filtrado se recoge en un tubo central. La suciedad queda retenida sobre la pared interior de las fibras que componen la membrana, y el permeado atraviesa las paredes. El filtrado se presuriza y fluye en sentido contrario para eliminar las partículas acumuladas en las fibras.

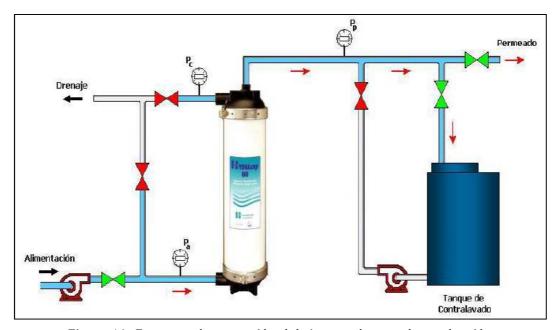


Figura 16: Esquema de operación del sistema durante la producción

6.1 Descripción de los lavados

Un aspecto muy importante a tener en cuenta en el diseño de la ultrafiltración son los continuos lavados que han de realizarse a fin de mantener su rendimiento y buen funcionamiento. Cada cierto tiempo se produce el ensuciamiento y consiguiente atascamiento de las membranas debido a acumulación de sólidos en su superficie, y por tanto, han de llevarse a cabo una serie de lavados con agua y aire, con el fin de mantener un caudal de producción estable.

Normalmente la secuencia de contralavado incluye las siguientes etapas:

- Etapa inicial de aireación: con la inyección de aire en los módulos se pretende sacudir las fibras y que se desprendan los contaminantes depositados en las membranas. Esta etapa tiene una duración de unos 25 segundos y a continuación le sigue una etapa de drenaje del módulo, para evacuar la suciedad durante la aireación y vaciar el contenido del módulo.
- Etapa de contralavado de agua: un caudal de agua filtrada es bombeada en sentido contrario, es decir, se introduce en el módulo por la parte de filtrado y atraviesa la fibra de dentro a fuera, expulsando de este modo la membrana los contaminantes depositados en su superficie o interior.
- En último lugar se lleva a cabo un enjuague con agua de alimentación. En este caso el agua circula sobre la superficie de las fibras (no la atraviesa), con el objetivo de arrastrar la suciedad que queda, arrancada de las fibras en las etapas anteriores y asimismo eliminar la posible presencia de burbujas de aire que se hayan podido quedar.

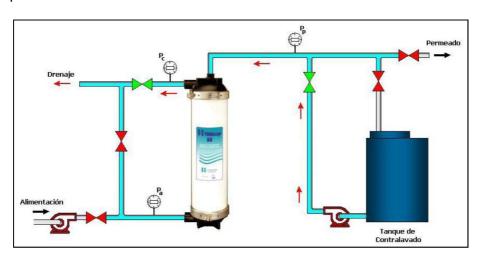


Figura 17: Esquema de operación del sistema durante el contralavado con agua y aire

Sin embargo estos lavados no son suficientes, por lo que el sistema de ultrafiltración llevará asociados dos sistemas de limpieza, el sistema CEB y el sistema CIP.

DISEÑO DE UNA IDAM DE GRAN CAPACIDAD. INCORPORACIÓN DE ÚLTIMOS AVANCES TECNOLÓGICOS

Cuando el contralavado solamente con agua y aire no es del todo efectivo se pueden añadir ciertos agentes químicos al agua para ayudar a la eliminación de la suciedad adherida a las membranas.

El sistema CEB (Chemically Enhanced Backwash) consistirá en un contralavado químico que se aplicará a cada bastidor diariamente para recuperar la condición inicial de la membrana, ya que a medida que se producen los ciclos de ultrafiltración la instalación pierde rendimiento, y se ve disminuido el flujo a través de las membranas. En este caso se inyectan en la línea de contralavado productos químicos, cuya naturaleza y concentración dependerá del grado y naturaleza del ensuciamiento. Este proceso requiere más tiempo que el contralavado solamente con agua, ya que es necesario dejar las membranas en remojo durante un cierto tiempo en la solución química para que la limpieza sea más efectiva.

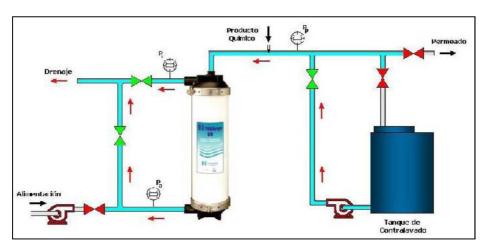


Figura 18: Esquema de operación del sistema durante el contralavado químico

Después se realizará un sistema de limpieza química intensiva CIP (Cleaning In Place). En este caso la solución química se recircula durante varias horas por el interior de las fibras, permitiendo tras unos minutos que parte del permeado retorne también al tanque de solución. Se usarán disoluciones de los mismos reactivos que los usados en el sistema CEB pero más concentradas.

Al final de la etapa de recirculación se suelen dejar las membranas en remojo durante unas horas, siguiendo con una etapa adicional de recirculación de solución química y finalizando con un enjuague de agua. La frecuencia de estas limpiezas químicas intensivas depende de las características del agua a tratar y del grado de ensuciamiento de las membranas, pero generalmente es de 1 ó 2 veces al año.

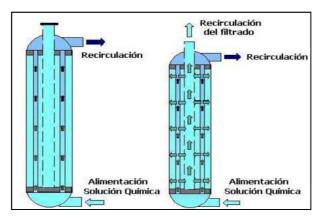


Figura 19: Esquema de operación del sistema durante el contralavado químico

7 TRATAMIENTOS QUÍMICOS

Una gran desaladora como esta requiere la captación de un gran caudal de agua que previamente deberá ser tratado para proteger toda la instalación posterior. Debido a esto es necesario realizar pretratamientos físicos y químicos.

El objetivo de este pretratamiento consiste en adecuar las características del agua a las necesidades del proceso, para conseguir un funcionamiento óptimo de la planta. La dosificación de los reactivos químicos para el tratamiento del agua se realizará de un modo eficiente. Con ello se conseguirá:

- Evitar corrosión y formación de incrustaciones
- Protección de las membranas de OI
- Prevención del deterioro prematuro de equipos
- Garantizar la mayor calidad posible en el agua de aporte
- Disminuir lavados y paradas de planta
- Obtener un agua producto con la calidad requerida

El diseño de estos pretratamientos químicos y los reactivos a utilizar dependerán de varios factores:

- Salinidad del agua
- Origen
- Composición físico química
- Variabilidad en el tiempo
- Conversión del proceso (IDAM →45%)

Los principales agentes del agua bruta que pueden llegar a causar ensuciamiento en las membranas son Fe, Al y Mn, que forman óxidos de fácil precipitación, pequeñas partículas, coloides, microorganismos, materia orgánica, etc., además de otros compuestos que pueden precipitar y formar incrustaciones como son los sulfatos de Ca, Ba o Sr, el carbonato cálcico, la sílice o el flúor. De todos ellos, el componente que mayor porcentaje de ensuciamiento genera en las membranas es sin duda la materia orgánica, siendo ésta responsable de más del 50% del ensuciamiento total.

Principales pretratamientos químicos que se aplicarán:

- Desinfección
- Coagulación floculación
- Reducción de oxidantes
- Antiincrustantes
- Regulación pH

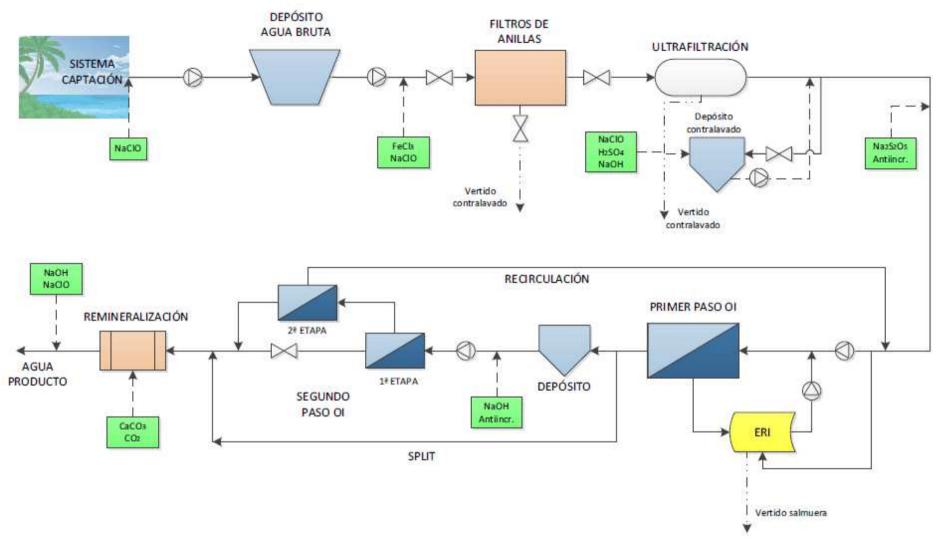


Figura 20: Esquema de utilización de reactivos de la planta

7.1 Desinfección

El primer pretratamiento utilizado consiste en una cloración del agua de mar mediante la dosificación de hipoclorito sódico (NaClO), debido a que la actividad biológica es muy reducida por la filtración natural del terreno. Con ello se consigue oxidar la materia orgánica que contenga el agua bruta e interrumpir los posibles desarrollos bacteriológicos tanto en las conducciones y equipos como en las membranas, y que puedan provocar daños en equipos.

Aunque la experiencia con agua de mar indica una mayor efectividad cuando se dosifica de forma discontinua a bajas dosis (orden de 2 ppm), se ha previsto una dosis de choque máxima de 5 ppm.

7.1.1 Equipos que componen la cloración:

- Depósito de almacenamiento de 10.000 litros de capacidad.
- 2 bombas dosificadoras de caudal regulable (una de reserva), las cuales disponen de filtro de aspiración, válvula de seguridad en la impulsión para vehicular el hipoclorito sódico al depósito en caso de sobrepresión. Diseñadas para trabajar en continuo o discontinuo.
- Tubería de PVC para la inyección de hipoclorito sódico.
- Selección del caudal a dosificar desde el panel de control.

Una vez finalizado el proceso, se realiza una pequeña desinfección en el agua producto, por lo que se aplicará una dosificación en continuo de 0,5 ppm tanto en la línea de proceso como el contralavado de ultrafiltración.

DESINFECCIÓN				
	Cloración agua de mar Desinfeccio			
Reactivo	Hipoclorito sódico (NaClO)	Hipoclorito sódico (NaClO)		
Modo de aplicación	Choques	Continuo		
Caudal a tratar	957.880,84 m³/día	384.000 m³/día		
Período de funcionamiento	6 horas	24 horas		
Dosificación	5 ppm	0,5 ppm		
Densidad del producto (Riqueza)	1,24 kg/l (12 %)	1,24 kg/l (12 %)		
Consumo	8.046,71 l/día	1.290 l/día		
Bombas en operación	2 + 1 reserva	2 + 1 reserva		
Caudal unitario adoptado	700 l/h	30 l/h		
Autonomía depósito almacenamiento	7 días	7 días		
Volumen depósito	56,33 m ³	9,03 m³		
Volumen depósito adoptado	60 m ³	10 m ³		

Tabla 21: Datos dosificación Hipoclorito sódico

7.2 Coagulación - Floculación

El objetivo de la coagulación es la desestabilización eléctrica de los coloides y la reagrupación de éstos y de las pequeñas partículas existentes en el agua, de manera que se facilite su posterior separación. Éstos coloides y pequeñas partículas son los responsables en gran medida de la turbidez, color, sabor y olor del agua, pudiendo venir de fuentes minerales, orgánicas o de microorganismos.

El proceso consiste en la adición de cargas positivas a los coloides, que los desestabilicen eléctricamente y se creen unas fuerzas de atracción mayores a las de repulsión, de forma que se reagrupen y se genere una aglomeración de partículas de mas fácil separación. El coagulante a utilizar en la planta es el Cloruro Férrico (FeCl₃), basándose el funcionamiento de este producto en la formación del correspondiente hidróxido de hierro y la generación de una cierta acidez. Con el objetivo de anular cargas y favorecer la aglomeración de partículas para una mayor facilidad de eliminación en los filtros de anillas y ultrafiltración, se dosificará 4 ppm en continuo.

La reacción básica que se produce es la siguiente:

$$Fe^{3+} + 3H_2O \leftrightarrow Fe(OH)_3 + 3H^+$$

$$HCO_3^- + H^+ \leftrightarrow H_2O + CO_2$$

7.2.1 Equipos de dosificación del Cloruro Férrico:

- Cuba de preparación con electro-agitador
- Bombas dosificadoras con regulación de caudal (una de reserva)
- Conducción de dosificación mediante tubería de PVC

En el caso del proyecto de una captación en pozo, no suele ser necesaria la coagulación pero es recomendable prevenir un sistema de dosificación de coagulante porque el agua, a pesar de su filtrado, sigue llevando una gran cantidad de partículas coloidales, que por sus especiales características de tamaño y carga eléctrica tienden a mantenerse indefinidamente en suspensión.

Para impedir el atascamiento de los módulos de ósmosis inversa por la formación de depósitos de partículas coloidales, se procede a su eliminación realizando una desestabilización de la suspensión.

- Composición química del agua.
- Cantidad de materia coloidal presente.
- pH.
- Temperatura.

COAGULACIÓN - FLOCULACIÓN			
Reactivo Cloruro Férrico (FeCl			
Modo de aplicación	Continuo		
Caudal a tratar	976.880,84 m³/día		
	39.911,70 m ³ /h		
Período de funcionamiento	24 horas		
Dosificación	4 ppm		
Densidad del producto (Riqueza)	1,4 kg/l (40 %)		
Consumo	6.842,01 l/día		
Bombas en operación	2 + 1 reserva		
Caudal unitario	142,54 l/h		
Caudal unitario adoptado	150 l/h		
Autonomía depósito almacenamiento	7 días		
Volumen depósito 47,89 m ³			
Volumen depósito adoptado	50 m ³		

Tabla 22: Datos dosificación Cloruro Férrico

7.3 Reducción de oxidantes

Como ya se ha comentado, el primer pretratamiento a realizar es la cloración del agua, que después se filtra y puede contener cloro residual libre, por lo que debe ser eliminado anteriormente al paso por las membranas, ya que, dicho oxidante degradaría irreversiblemente las membranas.

Para llevar a cabo la decloración y poder preservar la integridad de las membranas se utilizará un producto químico reductor, que en este caso es el Metabisulfito sódico (Na_2S_2O5), producto sólido que se disocia en el agua formando Bisulfito Sódico ($NaHSO_3$) según la reacción que se muestra a continuación:

$$Na_2S_2O_5 + H_2O \leftrightarrow 2 HSO_3^- + 2 Na^+$$

 $2 HSO_3^- + 2 Na^+ \leftrightarrow 2 NaHSO_3$

El bisulfito sódico es un agente capaz de reducir el ácido hipocloroso residual a iones cloruro, produciéndose a la vez la oxidación del bisulfito a bisulfato. Se realizará una dosificación de choques de 10 ppm.

7.3.1 Equipos que componen la dosificación de bisulfito sódico:

- Tanque de preparación de polietileno de alta densidad con electroagitador.
- Bombas dosificadoras (una de reserva) provistas de variador de frecuencia que permitirá la dosificación del reactivo de forma automática en función de la demanda a través de un medidor de potencial redox. Las bombas dosificadoras son de membrana, de materiales apropiados para resistir el líquido impulsado.
- La dosificación de bisulfito viene dada por la señal 4-20 mA que envía el sistema de control redox, actuando sobre el variador de frecuencia del motor de la correspondiente bomba dosificadora
- Tubería de PVC para la inyección

REDUCCIÓN DE OXIDANTES			
Reactivo	Bisulfito sódico (NaHSO ₃)		
Modo de aplicación	Choques		
Caudal a tratar	939.794,42 m³/día		
	39.158,10 m ³ /h		
Período de funcionamiento	6 horas		
Dosificación	10 ppm		
Densidad del producto	0,05 kg/l		
Consumo	46.989,72 l/día		
Bombas en operación	2 + 1 reserva		
Caudal unitario	3.915,81 l/h		
Caudal unitario adoptado	4.000 l/h		
Autonomía depósito almacenamiento	4 días		
Volumen depósito	187,96 m ³		
Volumen depósito adoptado	190 m ³		

Tabla 23: Datos dosificación Bisulfito sódico

7.4 Antiincrustantes

En los sistemas de OI existen riesgos de precipitación de sales que pueden reducir el rendimiento de la instalación. Cuando la concentración de una sal supera su solubilidad puede producirse la precipitación. Comenzarán a formarse núcleos de cristales, los cuales catalizan la formación de más cristales en su superficie. Esos cristales de sal pueden alcanzar un tamaño y densidad como para dejar de estar en solución.

La concentración de agua de mar en las membranas puede fácilmente provocar la precipitación de algunas sales. Los compuestos que habitualmente pueden provocar problemas de precipitados son: carbonatos de calcio y magnesio, sulfatos de calcio, bario y estroncio, fosfato cálcico, fluoruro cálcico, sílice, óxidos e hidróxidos de hierro y aluminio y sílice.

Los antiincrustantes son muy efectivos en la prevención del ensuciamiento de membranas de OI debido a la formación de incrustaciones, usados a pequeñas dosis detienen el proceso de precipitación al inhibir el crecimiento de estos cristales de sal. Su función es la de mejorar la solubilidad de algunas sales y prevenir su precipitación.

El mecanismo de actuación consiste en que los antiincrustantes son absorbidos en el plano de formación de los cristales de sal, impidiendo el crecimiento de los mismos y evitando la atracción de más iones desde la solución sobresaturada hacia la superficie del cristal. De esta forma, los cristales no alcanzan el tamaño suficiente como para acabar precipitando.

Se dosificará un dispersante cuya acción es impedir la formación de redes cristalinas, manteniendo a los iones en dispersión y permitiendo sobrepasar el límite de los productos de solubilidad de dichas sales. Se realizará una dosificación en continuo de 1 ppm, y el punto de dosificación se realizará antes de cada paso de la OI, para evitar, que el producto no disuelto correctamente, pase a las membranas.

7.4.1 Equipos que componen la dosificación de antiincrustante:

- Tanque de preparación de polietileno de alta densidad con cubierta y electroagitador que opere de forma continua
- Bombas dosificadoras (una en reserva). La cantidad de HMP, que dependerá de la dureza, turbidez y temperatura del agua a tratar, se regulará automáticamente en función del caudal del agua a tratar.

ANTIINCRUSTANTES				
	Previo al Segundo paso Ol			
Reactivo	Antiincrustante	Antiincrustante		
Modo de aplicación	Continuo	Continuo		
Caudal a tratar	939.794,42 m³/día	389.075 m³/día		
	39.158,10 m ³ /h	16.211,45 m ³ /h		
Período de funcionamiento	24 horas	24 horas		
Dosificación	1 ppm	1 ppm		
Densidad del producto	1,36 kg/l	1,36 kg/l		
Consumo	691,03 l/día	286,08 l/día		
Bombas en operación	2 + 1 reserva	2 + 1 reserva		
Caudal unitario	14,40 l/h	5,96 l/h		
Caudal unitario adoptado	15 l/h	15 l/h		
Autonomía depósito almacenamiento	7 días	7 días		
Volumen depósito	4,84 m³	2 m³		
Volumen depósito adoptado	5 m ³	5 m ³		

Tabla 24: Datos dosificación Antiincrustantes

7.5 Regulación del pH

En instalaciones con un segundo paso de OI es necesaria, a la entrada de éste, su dosificación. Para ello se realizará una corrección del pH, que tiene como principal objetivo evitar la precipitación de carbonato cálcico en las membranas. Si bien no se estima que existan problemas en este aspecto, debe diseñarse un sistema de dosificación con Hidróxido de Sodio en previsión de posibles problemas o cambios bruscos en la composición del agua de aporte.

La función de este compuesto es la de incrementar el pH del agua de entrada al segundo paso y facilitar la disociación del boro aumentando así su rechazo en las membranas de ósmosis inversa. En este caso se estima una dosificación por choques de 10 ppm.

Igual que en el caso del hipoclorito sódico, se realizará una pequeña dosificación de NaOH, en caso de que sea necesario, al final del proceso, en el agua producto.

REGULACIÓN pH			
Reactivo	Hidróxido sódico (NaOH)		
Modo de aplicación	Choques		
Caudal a tratar	389.075 m³/día		
	16.211,45 m ³ /h		
Período de funcionamiento	6 horas		
Dosificación	10 ppm		
Densidad del producto (Riqueza)	2,13 kg/l (100%)		
Consumo	456,70 l/día		
Bombas en operación	2 + 1 reserva		
Caudal unitario	38,06 l/h		
Caudal unitario adoptado	50 l/h		

Tabla 25: Datos dosificación Hidróxido sódico

8 ÓSMOSIS INVERSA

8.1 Datos generales de diseño

Uno de los objetivos del sistema de ósmosis inversa es la alta eficiencia en la eliminación de Boro. Este aspecto condicionará de manera importante el diseño y será característico de la planta. Como consecuencia de este condicionante se ha necesitado utilizar un sistema con doble paso de ósmosis inversa.

Las características más importantes de cada uno de los dos pasos tras las simulaciones correspondientes son las siguientes:

DISEÑO ÓSMOSIS INVERSA: CONFIGURACIÓN EN DOS PASOS					
	PRIMER PASO	SEGUNDO PASO			
N° de bastidores	28	14			
N° de etapas	1	2			
N° de tubos de presión por bastidor	168	76 (1ª etapa) y 34 (2ª etapa)			
N° de membranas por tubo	7	7			
N° de membranas por bastidor	1176	770			
Tipo de membranas	SWC5 (Hydranautics)	ESPAB MAX (Hydranautics)			
Conversión	45%	90%			
Presión	1000 psi	300 psi			
	Split variable (8-30%)				

Tabla 26: Diseño Ósmosis Inversa: Configuración en dos pasos

A continuación se muestra un esquema general de todo el proceso de ósmosis inversa:

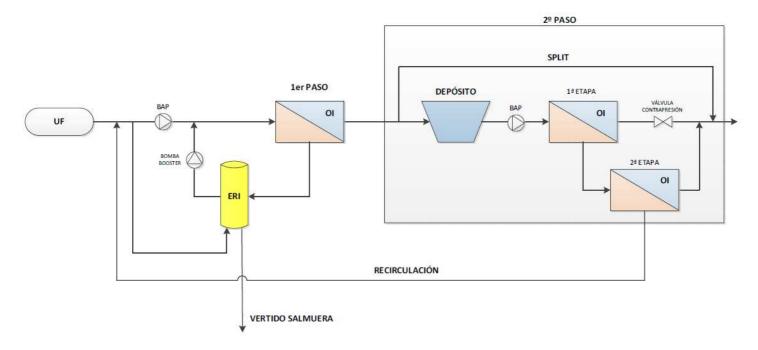


Figura 27: Esquema de Ol

Para establecer los límites de Split, se han hecho las siguientes dos simulaciones:

- Máxima temperatura y edad de membrana. Esta simulación determina el porcentaje mínimo de Split (8%). Se trata del Split que como mínimo se va a poder satisfacer (en las peores condiciones).
- Mínima temperatura y edad de membrana. Esta simulación determina el porcentaje máximo de Split (30%). Las condiciones son óptimas y esto permite aumentar el Split hasta un máximo en función de la calidad producto.

A continuación y a partir del Split mínimo se detallan los caudales producto, alimentación y rechazo para el análisis global de todo el proceso así como para el primer paso y segundo paso.

8.2.1 Caudales proceso ósmosis inversa

	(m3/d)	(m3/h)	(l/s)
Caudal neto de OI producido	384.000	16.000	4.444
Caudal alimentado OI	900.887	37.537	10.427
Caudal rechazo OI	516.887	21.537	5.982

Tabla 28: Caudales Ósmosis Inversa

8.2.2 Caudales del primer paso

	(m3/d)	(m3/h)	(l/s)
Caudal Producto 1 ^{er} Paso	422.907	17.621	4.895
Caudal Alimentado 1 ^{er} Paso	939.794	39.158	10.877
Rechazo 1 ^{er} Paso	516.887	21.537	5.982
Caudal alimentado Bomba Alta Presión	422.907	17.621	4.895

Tabla 29: Caudales Primer Paso Ósmosis Inversa

Como se puede comprobar, el caudal alimentado por la bomba de alta presión coincide con el caudal producto del primer paso.

El resto del caudal lo aporta la bomba Booster a través del sistema ERI, como se puede observar en el siguiente esquema:

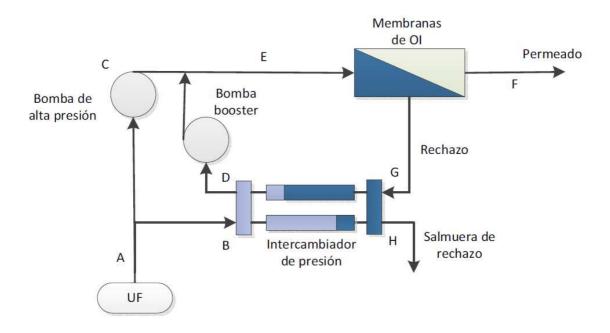


Figura 30: Esquema de operación del primer paso de OI

Donde los caudales, presiones y calidad del agua en cada uno de los tramos es la que se muestra a continuación:

CARACTERÍSTICAS DE LOS FLUJOS PRIMER PASO								
A B C D E F G H						Н		
Caudal (m3/h)	39.158	21.537	17.621	21.537	39.158	17.621	21.537	21.537
Presión (bar)	1,6	1,6	56	52	56	0	53	1,6
TDS (ppm)	40.037	40.037	40.037	40.037	40.037	153	70.467	70.467

Tabla 31: Flujos del Primer Paso de OI

8.2.3 Caudales del segundo paso

	(m3/d)	(m3/h)	(l/s)
Caudal Alimentado 2º Paso	389.075	16.211	4.503
Caudal procedente del Split	33.833	1.410	392
Caudal que atraviesa 2º Paso	350.167	14.590	4.053
Caudal total producto	384.000	16.000	4.444
Rechazo 2º Paso	38.907	1.621	450

Tabla 32: Caudales Segundo Paso Ósmosis Inversa

El rechazo obtenido en este segundo paso tiene una calidad mucho mayor que el rechazo del primer paso. Se trata de un agua que ya ha atravesado el primer paso y cuyo mayor problema son los niveles de Boro que se encuentran, por tanto, el caudal de rechazo de este segundo paso se recircula al principio del primer paso sin necesidad de un bombeo adicional.

Cabe también señalar que el caudal de producción en este segundo paso vendrá definido en primer lugar por el caudal procedente del Split del primer paso así como el que realmente atraviesa este segundo paso y que en la tabla se llama *Caudal total producto*.

Teniendo en cuenta el caudal de alimentación al primer paso y el agua producto del segundo paso se tiene una conversión global del proceso del 42,62 %.

8.3 Configuración en dos trenes

De cara a tener un sistema flexible frente a posibles incidentes y adaptable a diferentes caudales, se ha decidido dividir la planta en dos trenes independientes.

Tal y como ocurre en el resto de la planta, el proceso de Ósmosis Inversa se encuentra dividido en dos trenes simétricos. Cada uno de ellos consta de:

- 14 bastidores de OI de primer paso
- 7 bastidores de OI de segundo paso
- 14 bombas de alta presión de alimentación al primer paso
- 7 bombas de alta presión de alimentación al segundo paso
- 14 bombas de recirculación (Booster)

Además, ambos trenes compartirán:

- 1 bomba de reserva de alta presión de alimentación al primer paso
- 1 bomba de reserva de alta presión de alimentación al segundo paso
- 1 bomba de reserva de de recirculación (Booster)

A continuación se muestra un esquema de la planta y cómo se encuentra dividida en dos trenes desde el depósito de agua bruta hasta el final de postratamiento.

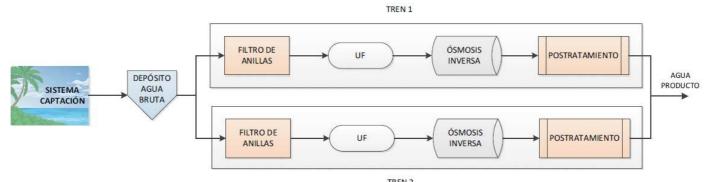


Tabla 33: Configuración en dos trenes

8.4.1 Primer Paso

Tal y como ya se ha comentado, se tienen 28 bastidores de primer paso y 14 bastidores de segundo paso. Por tanto la producción unitaria (producción por bastidor) en este primer paso es de 15.104 m³/día. Las membranas utilizadas son las del modelo SWC5 de la marca Hydranautics. Las características de diseño más importantes se detallan a continuación.

Parámetro	Valor	Unidades
Flujo específico empleado paso 1	14	l/m²/h
Flujo específico empleado paso 1	336	l/m²/día
Caudal a producir por línea en 1er paso:	629,3	m³/h
Superficie membrana:	37	m ²
N° de membranas necesarias:	1.215	uds.
N° membranas/tubo	7	uds.
N° tubos necesarios	174	uds.
N° tubos adoptados	168	uds.
N° total de membranas	32.928	uds.

Tabla 34: Parámetros de diseño Primer Paso Ósmosis Inversa

Además será necesario dotar al sistema de la presión de diseño siguiente.

Presión de trabajo	58.7	bar
Presión (en psi)	850,7	psi
Presión adoptada	1000	psi

Tabla 35: Presión Primer Paso Ósmosis Inversa

8.4.2 Segundo Paso

La producción unitaria (producción por bastidor) en este segundo paso es de 25.012 m³/día. Las membranas utilizadas son las del modelo ESPAB MAX de la marca Hydranautics.

Las características de diseño más importantes se detallan a continuación.

Parámetro	Valor	Unidades
Flujo específico empleado paso 2	37	l/m²/h
Flujo específico empleado paso 2	888	l/m²/día
Caudal a producir por línea en 2º paso	1042,2	m³/h
Superficie membrana	40	m²
N° de membranas necesarias	704	uds.
N° membranas/tubo	7	uds.
N° tubos necesarios	101	uds.
N° tubos adoptados	110	uds.
N° total de membranas	10780	uds.
Configuración	76:34	

Tabla 36: Parámetros de diseño Segundo Paso Ósmosis Inversa

Además será necesario dotar al sistema de la presión de diseño siguiente.

Presión de trabajo	11.4	bar
Presión (en psi)	165,3	psi
Presión adoptada	300	psi

Tabla 37: Presiones Segundo Paso Ósmosis Inversa

A continuación se muestra un esquema del proceso de este segundo paso:

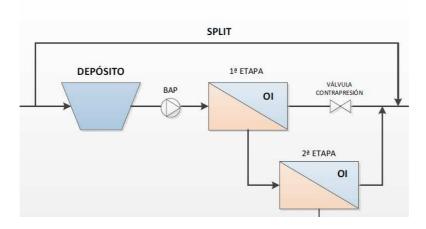


Figura 38: Esquema Segundo Paso OI

8.5 Simulaciones

Una vez hecho el prediseño para conocer el número de membranas necesarias en cada paso, se utilizó IMS Design para conocer la efectividad del proceso en distintos escenarios. Se ha tenido en cuenta tanto la vida de las membranas (0-3,6 años) como el rango de temperaturas de trabajo del proceso (16°-28°).

En la siguiente tabla se muestran los principales parámetros de calidad obtenidos tras las sucesivas simulaciones:

Temperatura	Edad membranas	TDS (ppm)	P _{BAP} (bar)	Boro (ppm)	pH 2 Paso	P _{BAP 2 paso} (bar)	[Cl] (ppm)	SPLIT %
16	3,6	57,49	61,30	0,47	8,10	12,20	33,11	25,00
10	0	51,31	57,30	0,38	8,10	11,20	29,56	30,00
22	3,6	41,46	59,00	0,49	9,00	12,40	23,77	13,00
22	0	54,58	56,00	0,49	8,80	10,70	31,40	24,00
24	3,6	36,51	58,50	0,49	9,20	12,40	20,91	10,00
24	0	48,12	55,70	0,49	9,00	11,00	27,64	19,00
28	3,6	36,75	57,80	0,49	9,50	11,80	21,06	8,00
20	0	45,88	55,50	0,48	9,40	10,70	26,36	15,00

Tabla 39: Simulaciones Ósmosis Inversa

Las tablas con todos los resultados obtenidos tras las simulaciones se pueden consultar en el ANEXO I.

9 BOMBEOS

9.1 Bombeo a depósito de agua bruta

Las bombas de captación han de impulsar el agua bruta desde la cántara de captación hasta el depósito de regulación situado al principio de la planta. Las características que presentan dichas bombas se presentan en la siguiente tabla:

BOMBEO A DEPÓSITO DE AGUA BRUTA		
Caudal bombeo	39,912 m ³ /h	
Número de bombas	7 + 1 reserva	
Caudal unitario	5,702 m ³ /h	
Altura manométrica	24 m	
Potencia motor	500 Kw	
Rendimiento motor	95 %	
Rendimiento bomba	85 %	

Tabla 40: Datos bombeo agua bruta

Para las conducciones del agua bruta desde la cántara de captación hasta la planta se utilizará tubería de PRFV, con una presión nominal de 10 bares, al igual que para el resto de conducciones de la planta, debido a su elevada resistencia a la corrosión y a su alta resistencia química.

Tuberías				
Material	PRFV			
Diámetro colector común impulsión	2,500 mm			
Diámetro colector individual aspiración	700 mm			
Diámetro colector individual impulsión	500 mm			

Tabla 41: Datos tuberías

9.2 Bombeo a baja presión

Las bombas de baja presión serán las encargadas de transportar el agua desde el depósito de regulación de agua bruta hasta los filtros de anillas. Las características de dicho bombeo son:

BOMBEO A BAJA PRESIÓN				
Caudal bombeo	39,912 m ³ /h			
Número de bombas	14 + 1 reserva			
Caudal unitario	2,850 m ³ /h			
Altura manométrica	52 m			
Potencia motor	450 Kw			
Rendimiento motor	95 %			
Rendimiento bomba	85 %			

Tabla 42: Datos bombeo a baja presión

9.3 Bombeo de alta presión

Las bombas de alta presión son las encargadas de impulsar la solución a tratar hacia las membranas de OI a la presión requerida por estas. En este bombeo es donde se consume la mayor parte de la energía que se necesita en una planta de OI.

La ósmosis inversa funcionará siempre que se le aplique al sistema una presión superior a la osmótica. Esa presión, en la situación más desfavorable, alcanza los 60,3 bar, lo que obliga a la instalación de bombas de alta presión (BAP), antes de las membranas de ósmosis inversa, que garanticen que dicha presión sea alcanzada teniendo en cuenta todas las pérdidas de carga que se puedan producir.

El consumo eléctrico de estas bombas es un punto crítico en la explotación de la planta, debiéndose maximizar su eficiencia para lograr el menor consumo energético posible. La presión necesaria en las membranas de ósmosis es mayor cuanto menor es la temperatura de operación, lo que hace que aumenten los consumos en las bombas.

Las bombas que se usarán para alta presión serán de cámara partida, ya que son las más utilizadas porque presentan rendimientos aceptables, su mantenimiento es bastante simple, aunque su coste de inversión es elevado.

Al tratarse de una planta con doble paso de ósmosis, es necesario instalar bombeos intermedios entre el primer paso y el segundo. La potencia de este segundo bombeo es muy inferior a la del primero paso, ya que la calidad del agua ha mejorado considerablemente y la concentración de sales es menor, reduciéndose de esta manera la presión osmótica.

En las siguientes tablas se muestran las características de las bombas, tanto para el primer paso como para el segundo:

BOMBEO ALTA PRESIÓN PASO 1			
Caudal bombeo	17,621 m³/h		
Número de bombas	28 + 1 reserva		
Caudal unitario	629 m³/h		
Altura manométrica	603 m		
Potencia motor	1,500 Kw		
Rendimiento motor	95 %		
Rendimiento bomba	85 %		

Tabla 43:	Datos	bombeo	a alta	presión
		PASO 1		

BOMBEO ALTA PRESIÓN PASO 2			
Caudal bombeo	16,211 m³/h		
Número de bombas	14 + 1 reserva		
Caudal unitario	1,158 m ³ /h		
Altura manométrica	132 m		
Potencia motor	600 Kw		
Rendimiento motor	95 %		
Rendimiento bomba	85 %		

Tabla 44: Datos bombeo a alta presión PASO 2

Además se dotará a las bombas de variadores de frecuencia, que permiten que la bomba ajuste su caudal y presión a las demandas del proceso, en función de la temperatura de operación y del grado de ensuciamiento de las membranas. Su uso es fundamental para tener en cuenta épocas de verano o épocas de invierno, donde la temperatura es diferente.

Estos variadores operan la bomba y controlan la velocidad del motor, para mantener el nivel de presión constante a pesar de las variaciones de la carga, reduciendo la aceleración de la bomba y asegurándose de que no vaya más rápido de lo que necesita. Trabajan controlando la amplitud de la corriente y voltaje del motor.

9.4 Bombas Booster

Parte del caudal de alimentación al primer paso de la ósmosis se deriva a un sistema de recuperación de energía (ERI) mientras que la alimentación restante es impulsada por las bombas de alta presión. Durante este proceso la salmuera sufre una pérdida de carga tanto en las membranas como en las tuberías y válvulas que es preciso compensar. Con este objetivo se dispone una bomba booster que impulsa un caudal de agua de mar ligeramente inferior al de la salmuera de rechazo y que aporta la diferencia de presión necesaria. De este modo se consigue que el caudal a impulsar por las bombas de alta presión se reduzca casi a la mitad, disminuyéndose considerablemente el consumo energético de la planta.

Las características de dichas bombas se muestran en la siguiente tabla:

BOMBEO BOOSTER			
Caudal bombeo	21,537 m ³ /h		
Número de bombas	28 + 1 reserva		
Caudal unitario	769 m³/h		
Altura manométrica	40 m		
Potencia motor	110 Kw		
Rendimiento motor	95 %		
Rendimiento bomba	85 %		

Tabla 45: Datos bombeo booster

9.5 Bombas de agua producto

Finalmente se dispondrán unas bombas que impulsarán el agua producto a los depósitos de almacenamiento, para su posterior suministro hacia la red de distribución.

9.6 Tabla de potencias

Teniendo en cuenta los principales bombeos anteriormente citados, a continuación se muestra una tabla con el consumo energético estimado en base a estos bombeos.

Tabla 46: Tabla de potencias

Descripción	Arranque	Unidades instaladas	Potencia absorbida (Kw)	Potencia instalada (Kw)	Potencia total instalada (Kw)	Unidades en operación en momento de máx. consumo	Potencia absorbida (Kw)	Potencia total absorbida (Kw)	Horas diarias de funcionamiento (h)	Consumo diario (Kwh)
CAPTACIÓN										
Bombas de agua bruta	Variador	8	476	500	4000	7	476	3329	24	79.901
INSTALACIÓN DESALADORA										
Bombeo de baja presión	Variador	15	512	450	6750	14	512	7172	24	172.120
Bombeo de alta presión PASO1	Arrancador	29	1319	1500	43500	28	1319	36930	24	886.322
Bombeo de alta presión PASO2	Arrancador	15	531	600	9000	14	531	7437	24	178.499
Bombeo de recirculación (BOOSTER)	Variador	29	107	110	3190	28	107	2994	24	71.859
							SUBTOTAL:			1.388.701
							MARGEN SE	GURIDAD:		5%
							TOTAL:		·	1.458.136

Consumo específico TOTAL	Kwh/m3	3,7972
Potencia TOTAL	Kw	57.863
Absorbida		

10 SISTEMA DE RECUPERACIÓN DE ENERGÍA - ERI

Uno de los principales problemas de la desalación ha sido, tradicionalmente, el gran consumo de energía necesario para llevar a cabo el proceso de OI. Por este motivo el desarrollo de sistemas de recuperación de energía ha sido uno de los factores claves en la evolución de esta tecnología, empleados para reducir el consumo eléctrico de las bombas de alta presión. Con ello se permite aprovechar la presión del rechazo del primer paso, que se transmite a la alimentación de las membranas.

Esta tecnología [11] aprovecha la gran presión del agua de rechazo generada en la ósmosis para devolverla, en gran medida, al agua de entrada y así disminuir la cantidad de energía necesaria para alcanzar las grandes presiones de entrada a la ósmosis.

El bombeo de alta presión está dispuesto conjuntamente y en paralelo con un sistema de recuperación dinámica de presión, que aprovecha la energía residual del agua de rechazo de cada tren para transmitirla a una parte del agua de alimentación.

Cada uno de estos sistemas está compuesto por un cilindro cerámico rotatorio que gira a 1,200 rpm, y que contiene las cámaras isobáricas en las que la salmuera, por desplazamiento positivo, impulsa al agua marina filtrada hacia la entrada de la ósmosis inversa, previo paso por la bomba Booster que compensa las posibles pérdidas de presión que se producen en el circuito.

Las ventajas fundamentales de estos recuperadores de energía son las siguientes:

- Tamaño reducido
- Materiales cerámicos de enorme dureza y resistencia a la corrosión
- Ausencia de válvulas o pistones que simplifican su operación y mantenimiento
- Diseño flexible y modular

Figura 47: Detalle Sistema de Recuperación de Energía

10.1 Explicación del proceso

El recuperador de energía (PX) cambia fundamentalmente el modo en que un sistema de ósmosis inversa opera. La siguiente figura ilustra la típica configuración de distribución de flujos en un sistema de ósmosis inversa con PX. El flujo de agua de salmuera [G] pasa a través del PX, donde la presión es transferida directamente al agua de mar hasta con un 98% de eficiencia. El flujo de agua de mar presurizado [D], el cual es casi igual al de agua de salmuera en presión y volumen, pasa a través de la bomba de recirculación. La bomba de recirculación impulsa el agua en el circuito de alta presión [E-G-D] a una tasa controlada por un variador de frecuencia en el motor de la misma. El agua de mar completamente presurizada, es impulsada desde la bomba de recirculación y se une al flujo de agua de mar proveniente de la bomba de alta presión (E), como se muestra en la siguiente figura:

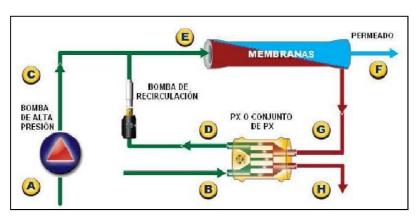


Figura 48: Diagrama de un sistema de recuperación de Energía

El PX y la válvula anti-retorno ubicada en la descarga de la bomba de alta presión sellan o aíslan el lado de alta presión del proceso de ósmosis inversa. Durante la operación del sistema, el agua es introducida en el circuito de alta presión [D-E-G] por la bomba de alta

presión. Casi toda esta agua sale del sistema como permeado y el resto fluye a través de los estrechos espacios que rodean al rotor, lubricándolo. El flujo de lubricación es típicamente alrededor de 0,5% del flujo total de la bomba de alta presión y se puede medir como la diferencia entre el caudal de la bomba de alta presión [C] y el caudal de permeado [F]. El caudal entregado por la bomba de alta presión y la resistencia a los caudales de permeado y de lubricación ofrecida por las membranas y los PX respectivamente, presurizan el circuito de alta presión.

10.2 Recuperadores rotativos

En esta planta se ha optado por la instalación de este tipo de dispositivos, Existe un único fabricante de este tipo de recuperadores, denominados Energy Recovery Inc., (ERI). Estos recuperadores están formados por un cuerpo cilíndrico en cuyo interior hay un conjunto de pares de pequeñas cámaras. Por efecto de la presión de la salmuera, el cilindro gira, realizando de esta manera la secuencia de cambio de cámara.

Figura 49: Recuperadores rotativos

Dentro del recuperador se transfiere la presión del flujo de salmuera de alta presión hacia el flujo de agua de mar de baja presión. Este proceso de transferencia de presión ocurre mediante el contacto momentáneo de ambos flujos en los conductos del rotor. Dicho rotor se encuentra dentro de una camisa y de dos tapas hechas de cerámica con tolerancias muy precisas, que crean un cojinete hidrodinámico con fricción casi cero cuando es llenado con agua a alta presión.

En todo momento, la mitad de los conductos del rotor están expuestos a flujo de alta presión y la otra mitad a flujo de baja presión. Mientras el rotor gira, los conductos pasan por el área de sellado (la cual separa al área de baja y alta presión del sistema). Aquellos que contienen alta presión están separados de que los que contienen baja presión por el sello creado entre las paredes del rotor y las tapas.

10.3 Diseño ERI

Para el diseño del sistema de recuperación de energía se parte de los parámetros indicados en la siguiente tabla:

RECUPERACIÓN DE ENERGÍA				
Caudal total de salmuera	21,537 m ³ /h			
Número de cámaras por línea	12 uds			
Número de cámaras en operación	336 uds			
Caudal máximo de salmuera/cámara	65 m³/h			
Máximo porcentaje de mezcla	1 %			

Tabla 50: Datos diseño ERI

10.4 Mantenimiento

La unidad PX no requiere mantenimiento periódico: no hay ejes, acoplamientos, juntas o sistemas de lubricación que se necesite mantener o monitorizar. Para todas las acciones (montaje, desmontaje, puesta en marcha...), se recurre al manual facilitado por el fabricante.

11 REMINERALIZACIÓN

11.1 Datos generales de diseño

El agua procedente del proceso de la ósmosis inversa contiene muy pocas sales, en concreto, sales divalentes como calcio y magnesio y además, tendrá un pH ácido.

Además, existen unos requerimientos de agua producto. En particular, los dos más importantes de cara al diseño de la remineralización son:

- Índice de Langelier = 0 0,5
- Dureza (expresada como ppm CaCO3) = 80-120 ppm

Para la remineralización del agua producto se ha decidido utilizar lechos de calcita con dosificación de CO₂. La reacción que tiene lugar es la siguiente:

$$CO_2+CaCO_3 \leftrightarrow 2(HCO_3)^{-}+Ca^{2+}$$

Los motivos por los que se ha decidido utilizar este sistema son:

- El agua disuelve solo el reactivo necesario para equilibrar su índice de Langelier, por lo que no hay riesgo de infra o sobredosificación.
- Procedimiento muy sencillo: el agua pasa por un lecho similar a los lechos filtrantes.
- Tiene un coste de operación reducido en comparación a otros sistemas como las lechadas de cal. No se debe olvidar que uno de los objetivos que persigue el proyecto

es optimizar el coste de operación y mantenimiento de la planta implementando la tecnología más avanzada en desalación.

Produce una relativa baja turbidez en comparación a las lechadas de cal.

Los condicionantes más importantes a la hora de diseñar los filtros se detallan en la tabla siguiente:

Parámetro	Valor	Unidades
Caudal a tratar	384.000	m³/d
Caudal a tratar	16.000	m³/h
Dureza deseada en agua producto	8	°F
Relación CaCO3/°F	8,5	ppm
Dosis Ca(CO ₃) ₂	68	ppm
Dosis CO ₂	29,92	ppm
Consumo de Ca(CO ₃) ₂	1.088	kg/h
Consumo de Ca(CO ₃) ₂	26.112	kg/día

Tabla 51: Condicionantes iniciales lechos de calcita

11.2 Dimensionamiento

El equipo necesario para la remineralización del agua permeada está compuesto por:

- Tanque de almacenamiento de CO₂ líquido
- Evaporador de CO₂
- Dosificador de CO₂
- Filtros de calcita

En primer lugar el agua entra a una cámara de reparto desde donde se va distribuyendo a los distintos lechos de carbonato cálcico por la parte de abajo.

11.2.1 Filtros de calcita

Una vez tenidos en cuenta todos los condicionantes anteriores y asumiendo las limitaciones constructivas de estos equipos, se tiene el siguiente dimensionamiento:

Parámetro	Valor	Unidades
Anchura	3	m
Longitud	8	m
Área por celda	24	m²
Velocidad ascensional	11,5	m/h
Superficie total necesaria	1391,30	m²
N° de celdas necesarias	57,97	uds
N° de celdas adoptadas	58	uds
Caudal por celda	275,86	m³/h

Tabla 52: Número de celdas en lechos de calcita

Por tanto, al existir dos trenes en este proceso también se tienen 29 celdas en cada tren.

Para estimar la altura del lecho, es necesario estimar un tiempo de contacto de la calcita con el agua producto.

Parámetro	Valor	Unidades
Tiempo de contacto	10	min
Volumen de celda necesaria	45,98	m ³
Altura de celda	1,92	m
Altura de celda adoptada	2	m

Tabla 53: Altura en lechos de calcita

12 VERTIDO

12.1 Impacto ambiental a considerar

12.1.1 Agua de rechazo o salmuera y Posidonia

La salmuera o agua de rechazo que se produce en el proceso es un agua que no contiene otro residuo que no sea el de los iones que ya se encuentran en el agua del mar, pero concentrados en un volumen menor, aproximadamente la mitad.

Por tanto, el único objetivo en el diseño del vertido será el de reducir esta concentración hasta niveles aceptables que no pongan en peligro la supervivencia de especies como la *Posidonia oceánica* y otras especies fanerógamas.

Estas especies se diferencian de las algas marinas en que tienen una mayor capacidad de colonizar el fondo arenoso marino gracias a sus raíces, que les permiten sujetarse e impedir que las arrastren las corrientes.

La fanerógama marina más importante en el mar Mediterráneo es la *Posidonia oceánica*. Tanto por la superficie que ocupa como por su importancia ecológica y económica.

12.1.2 Otros vertidos

Además de la salmuera se deben considerar otros vertidos procedentes de la misma planta. Estos vertidos son:

- Agua de lavado de la ultrafiltración y filtros de anillas. Contendrán principalmente materia orgánica y sólidos en suspensión.
- Productos de limpieza química de las membranas. Contienen principalmente materia orgánica, sólidos en suspensión y detergentes. La frecuencia de su vertido se realizará una vez al año, con detergentes biodegradables.

12.1.3 Tratamiento de efluentes

Se utilizará una planta con tratamiento físico-químico con decantación lamelar. Los efluentes se verterán con la salmuera y estarán compuestos por los vertidos enumerados en el punto anterior. Además, será necesario disponer de una línea de los fangos generados en el proceso.

12.1.4 Otros impactos ambientales

A continuación se enumeran algunos de los impactos ambientales más importantes como consecuencia de la construcción de la planta:

- Consumo de energía y sus efectos indirectos incluyendo los criterios de eficiencia energética que deben tenerse en cuenta.
- Impacto visual de la edificación incluyendo los criterios de integración paisajística.
- Aquellos que atañen a las construcciones en tierra, construcción de la toma de agua y la construcción de los emisarios submarinos.
- Emisión de ruido.

12.2 Vertido de salmuera

Para conseguir la máxima dilución de la salmuera en el mar es necesario conocer los condicionantes ambientales del área de vertido como velocidades de corriente, salinidades medias y modelos de dilución que, en definitiva, puedan predecir el comportamiento de la salmuera y su posterior dilución en el medio.

Debido a que el objeto del proyecto no es el aprendizaje de este tipo de modelos, se dan las directrices para dimensionamiento básico de los mismos atendiendo a la experiencia que ya se tiene en proyectos similares.

Existen cuatro tipos de soluciones que son las más utilizadas para el vertido de la salmuera:

- Solución tradicional a partir de un emisario submarino. Debido a que la intención del proyecto era ser innovador al respecto, se ha desechado esta opción que viene de la inercia tecnológica y la experiencia en plantas depuradoras situadas en la costa.
- Mezclar la salmuera con la salida de agua de refrigeración de una gran central térmica. Esta solución se ha adoptado en la planta de Ashkelon, también en Israel y consigue diluir en gran medida la concentración. No se ha decidido utilizar esta solución porque es un gran limitante el hecho de poder encontrar en la zona una central térmica, tal y como ya se hizo en Ashkelon.
- Predilución de la salmuera con agua de mar en tierra. Es la solución adoptada en la desaladora de Jávea, pero supone un bombeo adicional de agua de mar. Por tanto y desde el punto de vista energético, se ha descartado esta opción para optimizar el consumo energético de la planta.
- Sistemas de difusión de la salmuera basados en estudios realizados por el CEDEX.
 Finalmente, ésta ha sido la solución adoptada por tratarse de la solución que requiere un menor coste energético y es la que se analiza a continuación.

12.2.1 Difusores para el vertido de salmuera

Se construirán dos tuberías de vertido de aproximadamente 2000 metros desde la línea de costa seguidas de un tramo difusor cada una con varios elevadores y una boquilla por elevador.

Estas boquillas dispararán la salmuera con una inclinación de 60° formando una parábola sobre la horizontal. El agua en su trayecto se irá mezclando con el caudal circundante diluyendo la concentración de sales.

Los difusores se dispondrán a una profundidad aproximada de 20 metros para conseguir una presión de 1-2 bares necesaria para una correcta dilución de la salmuera. De esta forma, la salmuera discurrirá por gravedad hasta las boquillas de los difusores con la suficiente presión y sin ningún coste energético.

El material de la tubería será HDPE. El diámetro se ha estimado teniendo en cuenta una velocidad en la tubería máxima de 1 m/s y el caudal máximo de rechazo (mínimo Split), para lo que se necesitará un diámetro de 2000 mm en cada una de las dos conducciones.

A hora de estimar el número exacto de difusores y la separación entre ellos sería necesario realizar simulaciones. Sin embargo, un buen ejemplo de cómo sería el vertido puede observarse en la siguiente imagen donde aparecen las dos conducciones paralelas y los difusores dispuestos contiguamente en el tramo difusor.

Figura 54: Difusores para el vertido de la salmuera

13 ESTUDIO DE EXPLOTACIÓN

13.1 Hipótesis iniciales

Para el estudio de explotación se ha considerado el agua de aporte máximo a la planta, el caudal de agua producto de diseño y una producción de 330 días al año teniendo en cuenta posibles paradas o averías durante el año.

	39.912	m³/h
Caudal de aporte	957.881	m³/día
	316.100.678	m³/año
	16.000	m³/h
Caudal total producido	384.000	m³/día
	126.720.000	m³/año
Días de Producción	330	días

Tabla 55: Hipótesis iniciales del estudio de explotación

Además, los costes que se han tenido en cuenta para realizar el estudio han sido los siguientes:

GASTOS FIJOS:

- Personal
- Mantenimiento y conservación
- Reposición de material fungible
- Reposición de membranas de UF y OI (15% de la reposición total)
- Administración y varios
- Análisis de laboratorio
- Plan de Vigilancia Ambiental
- Seguros

GASTOS VARIABLES:

- Gastos variables energéticos
- · Reactivos químicos intrínsecos del sistema
- Reactivos químicos en el tratamiento de efluentes
- Gastos de tratamiento de fangos
- Reposición de membranas de UF y OI (85% de la reposición total)

13.2 Costes fijos

13.2.1 Personal

Para una planta de estas características se estiman las siguientes necesidades de personal durante el período de explotación:

Jefe de planta	1
Subjefe de planta	1
Oficial electromecánico	3
Jefe de laboratorio	1
Operadores de planta	22
Ayudantes	2
Administrativo	2
TOTAL	32

Tabla 56: Necesidades de personal

Así mismo, coste del personal en (€/año) es el siguiente:

Unidades	Puesto	Coste unit.	Coste Total
1	Jefe de planta	55.000	55.000
1	Subjefe de planta	40.000	40.000
3	Oficial electromecánico	25.000	75.000
1	Jefe de laboratorio	37.000	37.000
22	Operadores de planta	24.000	528.000
2	Ayudantes	20.000	40.000
2	Administrativo	28.800	57.600

Tabla 57: Coste de personal desglosado

De forma que el coste total anual y por m³ de producción del personal es:

COSTES DE PERSONAL		
TOTAL	832.600	(Euros/año)
COSTE UNITARIO	0,0066	(Euros/m³)

Tabla 58: Coste de personal

13.2.2 Mantenimiento y conservación de la instalación

Se ha considerado el 100% de este coste como un coste fijo del mantenimiento y conservación de las instalaciones. Se ha estimado en base a los siguientes porcentajes sobre el coste de inversión inicial así como el propio coste de inversión inicial de la siguiente forma:

% Aplicado	Presupuesto (€)		
0,65%	EM 85.000.000		
0,42%	EE	19.000.000	
0,17%	OC	30.000.000	

Tabla 59: Inversión inicial en equipos mecánicos, eléctricos y obra civil

De forma que el coste total anual y por m³ de producción de mantenimiento y conservación de la instalación es:

Equipos mecánicos	552.500	Euros/año
Equipos eléctricos	79.800	Euros/año
Obras civiles	51.000	Euros/año
TOTAL	683.300	Euros/año
COSTE UNITARIO	0,0054	Euros/m ³

Tabla 60: Coste de mantenimiento y conservación de la instalación

13.2.3 Reposición de material fungible

Esta partida hace referencia a la adquisición de todo el material a reponer durante la operación de toda la instalación: aceites, grasas o elementos electro-mecánicos.

TOTAL	60.000	Euros/año
COSTE UNITARIO	0,0005€	Euros/m ³

Tabla 61: Coste de reposición de material fungible

13.2.4 Reposición de membranas de primer paso de Ol

N° de membranas instalación	32.928	Uds.
Precio unitario membrana	350	Euros/Ud.
% de Reposición anual	12,0	%
% de Reposición fijo	15,0	%
TOTAL	207.446,40	Euros/año
COSTE UNITARIO	0,0016	Euros/m ³

Tabla 62: Coste fijo de reposición de membranas de primer paso de OI

13.2.5 Reposición de membranas de segundo paso de Ol

N° de membranas instalación	10.780	membranas de 8"
Precio unitario membrana	350	Euros/ud.
% de Reposición anual	8	%
% de Reposición fijo	15	%
TOTAL	45.276	Euros/año
COSTE UNITARIO	0,0004	Euros/m ³

Tabla 63: Coste fijo de reposición de membranas de segundo paso de OI

13.2.6 Reposición de membranas de UF

N º de membranas instalación	9.545	Uds.
Precio unitario membrana	1.500	Euros/ud.
% de Reposición anual	12	%
% de Reposición fijo	15	%
TOTAL MEMBRANAS	257.715	Euros/año
COSTE UNITARIO	0,0020	Euros/m ³

Tabla 64: Coste fijo de reposición de membranas de UF

13.2.7 Administración y varios

Gastos varios: oficina, material, ropa, asesoría, etc.	35.000	Euros/año
Resto: seguridad y salud, calidad, etc.	20.000	Euros/año
TOTAL ADMINISTRACIÓN Y VARIOS	55.000	Euros/año
COSTE UNITARIO	0,00043	Euros/m ³

Tabla 65: Coste de administración y varios

13.2.8 Plan de Vigilancia Ambiental

TOTAL PLAN DE VIGILANCIA AMBIENTAL COSTE UNITARIO	90.000	Euros/año Euros/año
Control integridad del emisario:	30.000	Euros/año
Control de la dispersión del efluente	25.000	Euros/año
Medición de niveles sonoros	15.000	Euros/año
Campaña marina de medidas de salinidad	20.000	Euros/año

Tabla 66: Coste del Plan de Vigilancia Ambiental

13.2.9 **Seguros**

Tipo de seguro	Coste	Uds.
Seguro de responsabilidad civil	100.000	Euros/año
Seguro todo riesgo de daños materiales	100.000	Euros/año
Seguro de los vehículos	90.000	Euros/año
Seguro colectivo de accidentes	115.000	Euros/año
TOTAL SEGUROS	405.000	Euros/año
COSTE UNITARIO	0,0032	Euros/m ³

Tabla 67: Coste de Seguros

13.2.10 Análisis de laboratorio

TOTAL	100.000	Euros/año
COSTE UNITARIO	0,00079	Euros/m ³

Tabla 68: Coste de análisis de laboratorio

13.2.11 Término fijo de potencia

TOTAL	1.500.000	Euros/año
COSTE UNITARIO	0,01183	Euros/m ³

Tabla 69: Coste del término de fijo de potencia

13.2.12 Resumen de costes fijos

RESUMEN DE COSTES FIJOS			
Personal	832.600	Euros/año	
Mantenimiento y conservación (t. fijo)	683.300	Euros/año	
Reposición de material fungible	60.000	Euros/año	
Reposición de membranas primer paso	207.446,40	Euros/año	
Reposición de membranas segundo paso	45.276	Euros/año	
Reposición de membranas UF	257.715	Euros/año	
Administración y varios	55.000	Euros/año	
Plan de vigilancia ambiental	90.000	Euros/año	
Seguros	405.000	Euros/año	
Análisis de aguas	100.000	Euros/año	
Término fijo de potencia	1.500.000	Euros/año	
TOTAL	4.236.337,40	Euros/año	
TOTAL COSTE UNITARIO	0,0334	Euros/m ³	

Tabla 70: Resumen de gastos fijos

13.3 Costes variables

Los costes variables son aquellos que dependen exclusivamente de la cantidad de agua desalada, y que se producen únicamente si la planta está en funcionamiento.

13.3.1 Reactivos químicos

COSTE DE REACTIVOS QUÍMICOS		
Captación		
Hipoclorito s	ódico	
Consumo diario	9.977,93	kg/día
Consumo anual	3.292.715,39	kg/año
Precio	0,238	Euros/Kg
Coste anual	783.666,26	Euros/año
Coste específico	0,006	Euros/m³
Cloruro Fér	rico	
Consumo diario	9.578,81	kg/día
Consumo anual	3.161.006,78	kg/año
Precio	0,19	Euros/Kg
Coste anual	584.786,25	Euros/año
Coste específico	0,005	Euros/m ³
1er Paso Ósmosi	s Inversa	
Bisulfito Só	dico	
Consumo diario	2.349,49	kg/día
Consumo anual	775.330,40	kg/año
Precio	0,63 Euros/	
Coste anual	488.458,15	Euros/año
Coste específico	0,004 Euros/m	
Antiincrust	ante	
Consumo diario	939,79	kg/día
Consumo anual	310.132,16	kg/año
Precio	3,10	Euros/Kg
Coste anual	961.409,69	Euros/año
Coste específico	0,008	Euros/m³
2º Paso Ósmosis Inversa		
Hidróxido sódico		
Consumo diario	972,69	kg/día
Consumo anual	320.986,78	kg/año
Precio	0,25	Euros/Kg
Coste anual	80.246,70	Euros/año
Coste específico	0,001	Euros/m³

Antiincrustante		
Consumo diario	389,07	kg/día
Consumo anual	128.394,71	kg/año
Precio	3,10	Euros/Kg
Coste anual	398.023,61	Euros/año
Coste específico	0,003	Euros/m³
Lechos de Ca	alcita	
Ca(CO ₃)	2	
Consumo diario	26.112	kg/día
Consumo anual	8.616,960	kg/año
Precio	0,10	Euros/Kg
Coste anual	861.696	Euros/año
Coste específico 0,007 Euros/r		Euros/m³
CO ₂		
Consumo diario	11.489,28	kg/día
Consumo anual	3.791.462,40	kg/año
Precio	0,0655	Euros/Kg
Coste anual	248.340,79	Euros/año
Coste específico	0,002	Euros/m³
Agua Produ	ıcto	
Hipoclorito s	ódico	
Consumo diario	1.600	kg/día
Consumo anual	528.000	kg/año
Precio	0,2380	Euros/Kg
Coste anual	125.664	Euros/año
Coste específico	0,001	Euros/m³
Coste total de reactivos químicos	0,036	Euros/m³

Tabla 71: Coste de reactivos químicos

13.3.2 Tratamiento de fangos

COSTE UNITARIO | 0,0024 € | Euros/m³

Tabla 72: Coste de reposición de material fungible

13.3.3 Limpieza de membranas

COSTE UNITARIO | 0,0014 € | Euros/m³

Tabla 73: Coste de reposición de material fungible

13.3.4 Reposición de membranas de primer paso de Ol

N° de membranas instalación	32.928	Uds.
Precio unitario membrana	350	Euros/Ud.
% de Reposición anual	12	%
% de Reposición fijo	85	%
TOTAL	1.175.529,6	Euros/año
COSTE UNITARIO	0,0093	Euros/m ³

Tabla 74: Coste variable de reposición de membranas de primer paso de Ol

13.3.5 Reposición de membranas de segundo paso de Ol

COSTE UNITARIO	0,0020	Euros/m ³
TOTAL	256.564	Euros/año
% de Reposición fijo	85,0	%
% de Reposición anual	8,0	%
Precio unitario membrana	350	Euros/ud.
N° de membranas instalación	10.780	membranas de 8"

Tabla 75: Coste variable de reposición de membranas de segundo paso de Ol

13.3.6 Reposición de membranas de UF

Nº de membranas instalación	9.545	Uds.
Precio unitario membrana	1.500	Euros/ud.
% de Reposición anual	12	%
% de Reposición fijo	85	%
TOTAL MEMBRANAS	1.460.385	Euros/año
COSTE UNITARIO	0,0115	Euros/m ³

Tabla 76: Coste fijo de reposición de membranas de UF

13.3.7 Costes energéticos

Consumo especifico	3,7972	Kw-h/m ³
Precio del kw-h	0,1	Euros/Kw-h
COSTE TOTAL	48.118.477	Euros/año
COSTE UNITARIO	0,3797	Euros/m ³

Tabla 77: Costes energéticos variables

13.3.8 Resumen de costes variables

RESUMEN DE COSTES VARIABLES							
Coste total reactivos	0,0358	Euros/m ³					
Gastos de tratamiento de fangos	0,0024	Euros/m³					
Gastos de limpieza de membranas	0,0014	Euros/m ³					
Gastos reposición de membranas Ol	0,0113	Euros/m ³					
Coste total reposición UF	0,0115	Euros/m ³					
TOTAL SIN ENERGÍA	0,0624	Euros/m ³					
Costes Energéticos	0,3797	Euros/m ³					
TOTAL CON ENERGÍA	0,4421	Euros/m ³					

Tabla 78: Resumen de costes variables

13.4 Coste total de explotación

13.4.1 Sin incluir energía

EJECUCIÓN MATERIAL					
COSTES FIJOS (Euros/día)	12.837				
COSTES FIJOS (Euros/año)	4.236.337				
COSTES VARIABLES (Euros/día)	23.959				
COSTES VARIABLES (Euros/año)	7.906.306				
COSTES EXPLOTACIÓN (Euros /año)	12.142.643				
COSTES EXPLOTACIÓN (Euros /m³)	0,0958				

Tabla 79: Resumen de costes de explotación sin incluir energía

13.4.2 Incluyendo la energía

EJECUCIÓN MATERIAL					
COSTES FIJOS (Euros/día):	12.837				
COSTES FIJOS (Euros/año):	4.236.337				
COSTES VARIABLES (Euros/día):	169.772				
COSTES VARIABLES (Euros/año):	56.024.783				
COSTES EXPLOTACIÓN (Euros /año)	60.261.120				
COSTES EXPLOTACIÓN (Euros / m³)	0,476				

Tabla 80: Resumen de costes totales con energía

En cuanto a la mayor o menor representatividad de cada uno de los costes, en la siguiente tabla se muestran ordenados de mayor a menor todos los costes de explotación, así como el porcentaje sobre el coste unitario total.

Coste	€/AÑO	%
Energía	48.118.476,77 €	79,77%
Reactivos	4.532.291,45 €	7,51%
Reposición elementos	3.462.916,00 €	5,74%
Término de Potencia Fija	1.500.000,00 €	2,49%
Personal	832.600,00€	1,38%
Mantenimiento	683.300,00 €	1,13%
Efluentes y limpieza	481.536,00 €	0,80%
Seguros	405.000,00 €	0,67%
Análisis de laboratorio	100.000,00 €	0,17%
Plan de Vigilancia Ambiental	90.000,00 €	0,15%
Material fungible	60.000,00 €	0,10%
Administración y varios	55.000,00 €	0,09%
TOTAL	60.321.120,23€	100%

Tabla 81: Distribución de costes

El resumen de los costes de explotación se resume en el cuadro siguiente:

Costes de explotación								
Sin incluir	energía	Incluyendo energía						
Anual	12.202.643,45 €	Anual	60.321.120,23 €					
Por metro cúbico	0,10 €	Por metro cúbico	0,48 €					
Parte Fija	34,89%	Parte Fija	7,03%					
Parte Variable	65,11%	Parte Variable	92,97%					

Tabla 82: Resumen de costes de explotación

De manera gráfica estos datos se reflejan en el siguiente diagrama circular, donde cabe destacar la importancia y repercusión del término variable de la energía sobre el coste final del metro cúbico de agua.

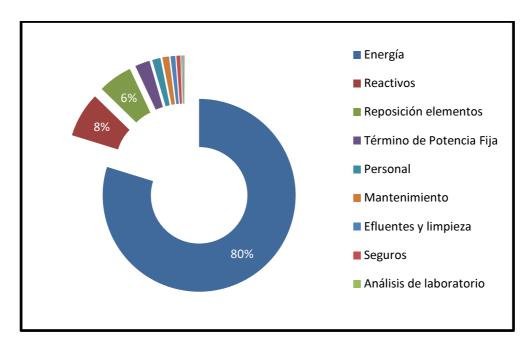


Figura 83: Distribución de costes de explotación

14 ANÁLISIS COMPARATIVO DEL USO DE CENTROS DE PRESIÓN (COMMON RAIL)

Los centros de presión, o *Common Rail*, son un sistema de bombeo de alta presión en el que se utiliza un menor número de bombas para alimentar a los bastidores de ósmosis inversa. En vez de utilizar una bomba por línea como sucede en el sistema convencional, se utiliza un número menor de bombas con una mayor capacidad de bombeo que impulsan el agua contra un colector común de alta presión desde donde se reparte el caudal a los distintos bastidores.

De esta forma se consigue un ahorro energético, debido sobre todo a que el rendimiento de las bombas instaladas en el centro de presión es mayor que el rendimiento de las bombas instaladas por separado en el sistema convencional. Además, se reduce en gran medida el coste de inversión fruto de un menor número de sistemas auxiliares asociados a cada bomba.

Este tipo de sistemas son parte de los últimos avances tecnológicos en el mundo de la desalación. Aunque su uso tiene ventajas e inconvenientes, en Israel, un país puntero y referente a nivel mundial en desalación, es la última tendencia y por esta razón se ha llevado a cabo un análisis comparativo entre el uso o no de estas configuraciones.

A continuación se muestra un esquema de la planta, tal y como se encuentra configurada y el esquema de cómo quedaría la planta si se utilizasen centros de presión. El esquema también se extrapolaría al segundo paso de ósmosis inversa.

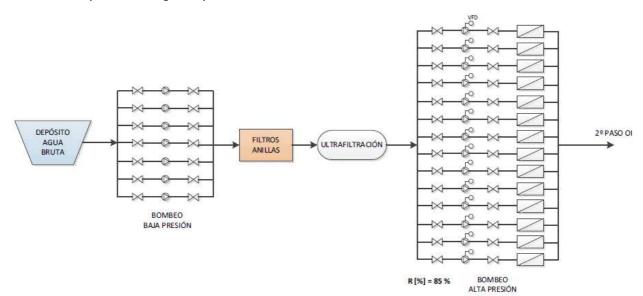


Figura 84: Configuración de primer paso de UI convencional (sin centros de presion)

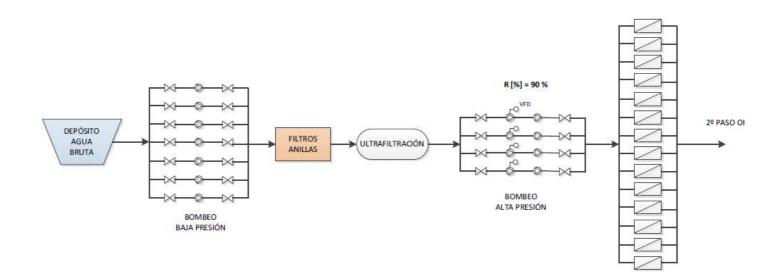


Figura 85: Configuración de primer paso de OI utilizando centros de presión (Common Rail)

El rendimiento estimado para las bombas del sistema convencional es un 85%. Utilizando centros de presión, se puede aumentar este rendimiento como mínimo hasta el 90% para las bombas que alimentan el colector común.

Como puede comprobarse en el esquema, las bombas del esquema convencional llevan además un variador de frecuencia para ajustarse a las diferentes condiciones de trabajo. Sin embargo, las bombas del esquema *Common Rail*, al tratarse de bombas de mayor dimensión, necesitan bombear caudales mayores. Por tanto, no es posible disponer de variadores de frecuencia para dichas bombas, sino que se disponen bombas con un caudal constante y los variadores de frecuencia se acoplan a bombas contiguas de menor tamaño. Estas bombas tan sólo tienen que aportar el caudal diferencia entre el caudal constante y el caudal de trabajo necesario por lo que sí es posible utilizar variadores de frecuencia en estos casos.

Figura 86: Bombas de alta presión

Lo mismo ocurre con el sistema de recuperación de energía, en lugar de que cada bastidor disponga de su propio sistema de recuperación, se recoge todo el rechazo y se lleva a un mismo colector donde se encuentra un único sistema de recuperación energética compuesto por todos los ERI del sistema convencional.

A continuación se exponen las ventajas e inconvenientes de usar centros de presión en lugar de un sistema tradicional, como se ha utilizado en el proyecto.

Ventajas

- Reducción de los costes totales del agua
- Máxima eficacia en operación y simplicidad de mantenimiento
- Reduce costes de inversión. Se reduce considerablemente el número de bombas en operación y por consiguiente, el sistema de válvulas, control y otros elementos asociados a esas bombas
- Mayor rendimiento de las bombas: de 85% a 90% o superiores

Inconvenientes

- Si falla una bomba, es necesario detener un número de bastidores proporcional al número total que se dispongan
- La secuencia de arranque es más complicada:

Sistema tradicional:

Se instalan las bombas, se arrancan y poco a poco se ajustan los parámetros.

Centros de presión:

Al estar todas las bombas conectadas y actuar todo como un mismo sistema presurizado, el arranque o parada de cada una de las bombas es más complicado, ya que todas las bombas se encuentran bombeando contra un colector común y por tanto, presurizado en el momento de querer arrancar una nueva bomba.

- Las alarmas y las paradas pueden generar más problemas. Una alarma en cualquier parte del sistema hace que sea necesario parar por completo todo el bombeo. Al no encontrarse sectorizado, es más difícil saber dónde está el problema y solucionarlo por partes.
- Si una de las bombas del sistema tradicional se estropea sólo es necesario detener la producción correspondiente a esa línea. En cambio, la parada de una de las bombas del sistema Common Rail significaría la parada de un número de bastidores proporcional a ese bombeo. Por ejemplo, en caso de contar con cuatro bombas, sería necesario parar una cuarta parte de los bastidores totales.

Por último, se adjunta el análisis comparativo respecto a potencia instalada, consumo energético y costes variables de la instalación:

Tabla 87: Comparativo Tabla de Potencias (SIN CENTRO DE PRESIÓN)

Descripción	Arranque	Unidades instaladas	Potencia absorbida (Kw)	Potencia instalada (Kw)	Potencia total instalada (Kw)	Unidades en operación en momento de máx. consumo	Potencia absorbida (Kw)	Potencia total absorbida (Kw)	Horas diarias de funcionamiento (h)	Consumo diario (Kwh)
CAPTACION										
Bombas de agua bruta	Variador	8	476	500	4000	7	476	3329	24	79.901
INSTALACIÓN DESALADO	ORA									
Bombeo de baja presión	Variador	15	512	450	6750	14	512	7172	24	172.120
Bombeo de alta presión PASO1	Arrancador	29	1319	1500	43500	28	1319	36930	24	886.322
Bombeo de alta presión PASO2	Arrancador	15	531	600	9000	14	531	7437	24	178.499
Bombeo de recirculación										
(BOOSTER)	Variador	29	107	110	3190	28	107	2994	24	71.859
	SUBTOTAL:			1.388.701						
	MARGEN SEGURIDAD:			5%						
					TOTAL:			1.458.136		

Consumo		
específico		
TOTAL	Kwh/m3	3,7972
Potencia		
Total		
Absorbida	Kw	57.863

Tabla 88: Comparativo Tabla de Potencias (CON CENTRO DE PRESIÓN)

Descripción	Arranque	Unidades instaladas	Potencia absorbida (Kw)	Potencia instalada (Kw)	Potencia total instalada (Kw)	Unidades en operación en momento de máx. consumo	Potencia absorbida (Kw)	Potencia total absorbida (Kw)	Horas diarias de funcionamiento (h)	Consumo diario (Kwh)
CAPTACION										
Bombas de agua bruta	Variador	8	476	500	4000	7	476	3329	24	79.901
INSTALACIÓN DESALADO)RA									
Bombeo de baja presión	Variador	15	512	450	6750	14	512	7172	24	172.120
Bombeo de alta presión PASO1	Arrancador	5	8720	9000	45000	4	8720	34878	24	837.081
Bombeo de alta presión PASO2	Arrancador	5	1756	2000	10000	4	1756	7024	24	168.582
Bombeo de recirculación	Variador	5	707	800	4000	4	707	2828	24	67.867
	SUBTOTAL				1.325.552					
	MARGEN SEGURIDAD			5%						
	TOTAL				1.391.829					

Consumo	específico		
TOTAL		Kwh/m3	3,6246

Potencia Total		
Absorbida	Kw	55.231

• COSTES VARIABLES:

SIN CENTROS DE PRESIÓN

CON CENTROS DE PRESIÓN

	€/AÑO	€/DIA
Costes Energéticos	48.118.477	145.814
TOTAL CON ENERGÍA	56.987.855	172.690

	€/AÑO	€/DIA
Costes Energéticos	45.930.368	139.183
TOTAL CON ENERGÍA	54.799.746	166.060

• COSTE TOTAL DE EXPLOTACIÓN CON ENERGÍA:

Ejecución material:

Costes fijos (€/día)	12.837
Costes fijos (€/año)	4.236.337
Costes variables (€/día)	172.690
Costes variables (€/año)	56.987.855
Costes de explotación (€ /año)	61.224.192
Costes de explotación (€ /m3)	0,483

Ejecución material:

Costes fijos (€/día)	12.837
Costes fijos (€/año)	4.236.337
Costes variables (€/día)	166.060
Costes variables (€/año)	54.799.746
Costes de explotación (€ /año)	59.036.083
Costes de explotación (€ /m3)	0,466

Tabla 89: Comparativo Costes Variables y Costes de Explotación

15 REFERENCIAS

- [1] TENNE, Abraham; The Master Plan for Desalination in Israel, 2020" Desalination Division and Water Technologies Israel's Water Authority.
- [2] Hydranautics Corporate Office. Disponible online en: http://www.membranes.com/. Última visita: 24/06/2013.
- [3] Apuntes de clase del Máster en Ingeniería y Gestión del Agua EOI 2012-2013 de los profesores:
- Aitor Díaz Pérez
- Gabriela Mañueco Pfeiffer
- José Luis Pérez Talavera
- [4] Amiad Filtration Systems Ltd. Disponible online en: www.amiad.com. Última visita: 24/06/2013.
- [5] LOKIEC Fredi y KRONENBERG Gustavo. Desaladora de Agua de mar de Ashkelon (Israel).
- [6] BUENDÍA CANDEL Rafael. Ashdod Desalination Plant (Israel).
- [7] Guía de Desalación: aspectos técnicos y sanitarios en la producción de agua de consumo humano. Ministerio de Sanidad y Política Social.
- [8] Hispagua. Sistema español de información sobre el agua. http://hispagua.cedex.es. Última visita: 24/06/2013.
- [9] *Desalination. Water Sanitation and Health.* Organización Mundial de la Salud. http://www.who.int/water_sanitation_health/gdwqrevision/desalination/en/. Última visita: 24/06/2013.
- [10] LIBERMAN, Boris. Pressure Center and Boron Removal in Ashkelon Desalination Plant.
- [11] Energy Recovery, Inc. Disponible en: http://www.energyrecovery.com/. Última visita: 24/06/2013.
- [12] Flowserve Corporation. Disponible en: http://www.flowserve.com/es_ES Última visita: 24/06/2013.
- [13] Programa empleado en la simulación de la IDAM: IMS Design (Hydranautics Corporate Office, 2013).

ANEXO I

PROYECCIONES IMS DESIGN

DOS PASOS & CONTRAPRES. PERM.(VARIABLE)

Programa O.I. licenciado a: Cálculo creado por: Caudal mezcla: 571,4 m3/hr Proyecto: Caudal de Permeado: 614,44 387,10 m3/hr proyecto Caudal bomba alta pres: 1365,6 430,1 m3/hr Caudal agua cruda: 1322,4 m3/hr 90,0 Presión Alim.: 57,3 11,2 bar Recuperación: 45,0 % Temp. Agua Alim.: 16,0 C(61F) Recup. total sistema: 43,2 % pH Agua Alim.: 8,1 8,1 Edad de las Membranas: 0,0 años Dosis Químico, ppm, ppm 0,8 Disminución flux %/año: 7,0 0,0 0,0 Fouling factor: 1,00 1,00 Incremento paso sales, 10,0 0,0 %/año:

Flux promedio: 14,1 24,6 lm2hr Tipo de Alimentación: Agua de mar - toma abierta

Etapa	Perm.	Caudal/tubo		Flux	Beta	Conc.&Contra.		Elemento	Elem.	Arreglo				
	Caudal	Alim.	Conc.			Presiones		Presiones		Presid		Tipo	Nο	
	m3/hr	m3/hr	m3/hr	l/m2-hr		bar	bar							
1-1	614,5	8,1	4,5	14,1	1,01	56,1	0,0	SWC5	1176	168x7				
2-1	273,7	11,3	4,1	25,2	1,20	9,4	1,5	ESPAB MAX	266	38x7				
2-2	113,5	9,2	2,5	23,3	1,29	8,0	0,0	ESPAB MAX	119	17x7				

	Agua d	ruda	Agua /	Alim.	Perme	eado	Conc.		
lón	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l	
Ca	442,0	22,0	428,2	21,4	0,135	0,0	778,2	38,8	
Mg	1499,0	123,4	1452,2	119,5	0,456	0,0	2639,3	217,2	
Na	12020,0	522,6	11659,0	506,9	18,061	0,8	21154,0	919,7	
K	671,0	17,2	651,1	16,7	1,270	0,0	1180,7	30,3	
NH4	0,1	0,0	0,1	0,0	0,000	0,0	0,2	0,0	
Ва	0,006	0,0	0,006	0,0	0,000	0,0	0,011	0,0	
Sr	6,362	0,1	6,164	0,1	0,002	0,0	11,202	0,3	
CO3	13,7	0,5	13,3	0,4	0,002	0,0	24,2	0,8	
HCO3	163,3	2,7	158,9	2,6	0,428	0,0	288,0	4,7	
SO4	3056,0	63,7	2960,7	61,7	0,994	0,0	5380,6	112,1	
CI	22157,0	625,0	21487,5	606,1	29,564	0,8	38995,6	1100,0	
F	1,5	0,1	1,5	0,1	0,004	0,0	2,6	0,1	
NO3	1,0	0,0	1,0	0,0	0,012	0,0	1,8	0,0	
В	5,30		5,26		0,379		9,04		
SiO2	1,0		1,0		0,00		1,8		
CO2	0,97		0,94		0,33		0,03		
TDS	40037,4		38825,9		51,31		70467,1		
На	8.1		8.1		7.2		8.6		

	Agua cruda	Agua Alim.	Conc.
CaSO4 / Ksp * 100:	25%	24%	50%
SrSO4 / Ksp * 100:	22%	21%	45%
BaSO4 / Ksp * 100:	32%	31%	63%
Sat. SiO2:	1%	1%	1%
Indice Sat. de Langelier	1,10	1,08	2,03
Indice Sat. de Stiff & Davis	0,19	0,17	1,05
Fuerza iónica	0,79	0,77	1,40
Presión osmótica	28,3 bar	27,4 bar	49,8 bar

Los cálculos de rendimiento del producto están basados en el rendimiento nominal del elemento de membrana, funcionando con agua de alimentación de una calidad aceptable. Los resultados mostrados en los listados creados por este programa son estimaciones del rendimiento del producto. Ninguna garantía ele producto o rendimiento del sistema es expresada o implícita, a menos que no sea proporcionada en una garantía separada firmada por un representante autorizado de Hydranautics. Los cálculos de la presión a elimentación aplicada son las mejores estimaciones para asistir al cliente en el dimensionamiento de la bomba de alta presión y no son una garantía de la presión actual de operación durante la vida del producto. Las presiones calculadas contienen un margen de seguridad para asegurar que las bombas de alimentación sean apropiadamente no son una garantia de la presion acuar de operación proporcionada. El margen de seguridad para asegurar que las bombas de alimentación sean apropiadamente dimensionadas basándose en la información proporcionada. El margen de seguridad incluye factores para un ratio normal de ensuciamiento de la membrana durante la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Como la cantidad de reactivos químicos necesarios para el ajuste de pH es dependiente del agua de alimentación. Como la cantidad de reactivos químicos necesarios para el ajuste de pH es dependiente del agua de alimentación y no es dependiente de la membrana, Hydranautics no garantiza el consumo de reactivos químicos. Si se requiere una garantía de sistema o producto, por favor póngase en contacto con representantes de Hydranautics. Las garantías no estándar o ampliadas, pueden resultar en precios diferentes a los precios cotizados anteriormente. (27/37)

DOS PASOS & CONTRAPRES. PERM.(VARIABLE)

Programa O.I. licenciado a: Cálculo creado por: Proyecto: proyecto Caudal bomba alta pres: 1365,6 Presión Alim.: 57,3 Temp. Agua Alim.: pH Agua Alim.: 8,1 Dosis Químico, ppm, ppm 0,0			430,1 11,2 16,0 8,1 0,8	m3/hr bar C(61F)	Cauda Cauda Recup Recup Edad o Dismir Fouling	Il mezcla: Il de Perme Il agua cru eración: . total siste de las Men nución flux g factor: nento paso	da: ema: nbranas: %/año:		4,44 45,0 7,0 1,00 10,0	571,4 387,10 1322,4 90,0 43,2 0,0 0,0 1,00 0,0	m3/hr %	
Flux promed	io:		14,1	24,6	lm2hr	Tipo d	e Alimenta	ción:	Agua de	e mar - t	oma abiert	a
Etapa	Perm. Caudal m3/hr	Cauda Alim. m3/hr	al/tubo Conc. m3/hr	Flux I/m2-		3eta	Conc.&C Presic bar		Elemen Tipo	ito	Elem. Nº	Arreglo
1-1 2-1 2-2	614,5 273,7 113,5	8,1 11,3 9,2	4,5 4,1 2,5	14,1 25,2 23,3	2 1	1,01 1,20 1,29	56,1 9,4 8,0	0,0 1,5 0,0	SWC5 ESPAB N ESPAB N	ЛΑХ	1176 266 119	168x7 38x7 17x7
etapa Elei Nº		Pres gota Bar	Perm flujo m3/hr	Perm Flux I/m2h	Beta	Perm sal SDT (ppm)	Conc. osm pres	CaSO4	Saturació SrSO4	n en Coi BaSO		Lang.
1-1 1 1-1 2 1-1 3 1-1 4 1-1 5 1-1 6 1-1 7	57,3 57,1 56,9 56,7 56,5 56,4 56,2	0,3 0,2 0,2 0,2 0,1 0,1	1,0 0,8 0,6 0,5 0,3 0,2 0,2	26,8 21,5 16,7 12,7 9,1 6,7 4,9	1,05 1,04 1,03 1,02 1,02 1,02 1,01	59,8 70,6 83,3 97,8 114,5 133,1 152,7	31,2 35,2 39,0 42,5 45,4 47,8 49,8	28 33 37 41 45 48 50	25 29 33 37 40 43 45	36 41 47 52 56 60 63	1 1 1 1 1 1	1,6 1,7 1,8 1,8 1,9 1,9
2-1 1 2-1 2 2-1 3 2-1 4 2-1 5 2-1 6 2-1 7	11,2 10,8 10,5 10,2 9,9 9,7 9,6	0,4 0,4 0,3 0,2 0,2 0,2 0,1	1,2 1,1 1,1 1,0 1,0 1,0 0,9	28,5 26,8 25,8 24,9 24,2 23,5 22,9	1,10 1,10 1,12 1,13 1,15 1,17 1,20	1,1 1,2 1,3 1,4 1,6 1,7	0,1 0,1 0,2 0,2 0,2 0,3 0,3	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	-3,5 -3,3 -3,2 -3,0 -2,8 -2,6 -2,4
2-2 1 2-2 2 2-2 3 2-2 4 2-2 5 2-2 6 2-2 7	8,5 8,3 8,2	0,3 0,3 0,2 0,2 0,1 0,1	1,1 1,0 1,0 1,0 0,9 0,9 0,9	26,0 25,0 24,1 23,3 22,5 21,7 20,7	1,12 1,10 1,14 1,17 1,19 1,24 1,30	1,9 2,0 2,0 2,1 2,3 2,5 2,8	0,4 0,4 0,5 0,6 0,7 0,9 1,2	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	-2,2 -2,0 -1,8 -1,6 -1,4 -1,1 -0,7
1-1 1	DP par 8,3 9,1											

2-2 8,0

Los cálculos de rendimiento del producto están basados en el rendimiento nominal del elemento de membrana, funcionando con agua de alimentación de una calidad aceptable. Los resultados mostrados en los listados creados por este programa son estimaciones del rendimiento del producto. Ninguna garantía del producto o rendimiento del sistema es expresada o implícita, a menos que no sea proporcionada en una garantía separada firmada por un representante autorizado de Hydranautics. Los cálculos de la presión de alimentación aplicada son las mejores estimaciones para asistir al cliente en el dimensionamiento de la bomba de alta de alta presión y no son una garantía de la presión actual de operación durante la vida del producto. Las presiones calculadas contienen un margen de seguridad para asegurar que las bombas de alimentación sean apropiadamente dimensionadas basándose en la información proprocionada. El margen de seguridad incluye factores para un ratio normal de ensuciamiento de la membrana durante la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Como la cantidad de reactivos químicos son para el ajuste de pH es dependiente del agua de alimentación y no es dependiente de la membrana, Hydranautics no garantiza el consumo de reactivos químicos son se require una garantía de sistema o producto, por favor póngase en contacto con representantes de Hydranautics. Las garantías no estándar o ampliadas, pueden resultar en precios diferentes a los precios cotizados anteriormente.

Programa O.I. licenciado a:

Cálculo creado por:

Caudal de Permeado: 614,44 m3/hr Proyecto: proyecto Caudal bomba alta pres: 1365,6 m3/hr Caudal agua cruda: 1322,4 m3/hr Presión Alim.: Tasa recuperación perm: 45,0 % 57,3 bar Temp. Agua Alim.: 16,0 C(61F) pH Agua Alim.: 8,1 Edad de las Membranas: 0,0 años Dosis Químico,ppm (100%) 0,0 H2SO4 Disminución flux %/año: 7,0 % Fouling factor: 1,00 Incremento paso sales, 10,0

%/año:

Flux promedio: 14,1 lm2hr Tipo de Alimentación: Agua de mar - toma abierta

Etapa	Perm.	Cauda	al/tubo	Flux	Beta	Conc.&	Contra.	Elemento	Elem.	Arreglo
-	Caudal	Alim.	Conc.			Presi	iones	Tipo	N°	
	m3/hr	m3/hr	m3/hr	l/m2-hr		bar	bar			
1-1	614,5	8,1	4,5	14,1	1,01	56,1	0,0	SWC5	1176	168x7

	Agua cruda 1		Agua A	lim. 1	Perme	ado 1	Cond	:. 1
lón	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l
Ca	442,0	22,0	428,2	21,4	0,41	0,0	778,2	38,8
Mg	1499,0	123,4	1452,2	119,5	1,40	0,0	2639,3	217,2
Na	12020,0	522,6	11659,0	506,9	54,07	0,8	21154,0	919,7
K	671,0	17,2	651,1	16,7	3,77	0,0	1180,7	30,3
NH4	0,1	0,0	0,1	0,0	0,00	0,0	0,2	0,0
Ba	0,006	0,0	0,006	0,0	0,000	0,000	0,011	0,0
Sr	6,362	0,1	6,164	0,1	0,006	0,000	11,202	0,3
CO3	13,7	0,5	13,3	0,4	0,01	0,0	24,2	0,8
HCO3	163,3	2,7	158,9	2,6	1,18	0,0	288,0	4,7
SO4	3056,0	63,7	2960,7	61,7	3,05	0,0	5380,6	112,1
CI	22157,0	625,0	21487,5	606,1	88,61	0,8	38995,6	1100,0
F	1,5	0,1	1,5	0,1	0,01	0,0	2,6	0,1
NO3	1,0	0,0	1,0	0,0	0,03	0,0	1,8	0,0
В	5,30		5,26		0,64		9,04	
SiO2	1,0		1,0		0,00		1,8	
CO2	0,97		0,94		0,94		0,94	
TDS	40037,4		38825,9		153,2		70467,1	
pН	8,1		8,1		6,4		8,6	

	Agua cruda	Agua Alim.	Conc.
CaSO4 / Ksp * 100:	25%	24%	50%
SrSO4 / Ksp * 100:	22%	21%	45%
BaSO4 / Ksp * 100:	32%	31%	63%
Sat. SiO2:	1%	1%	1%
Indice Sat. de Langelier	1,10	1,08	2,03
Indice Sat. de Stiff & Davis	0,19	0,17	1,05
Fuerza iónica	0,79	0,77	1,40
Presión osmótica	28,3 bar	27,4 bar	49,8 bar

Los cálculos de rendimiento del producto están basados en el rendimiento nominal del elemento de membrana, funcionando con agua de alimentación de una calidad aceptable. Los resultados mostrados en los listados creados por este programa son estimaciones del rendimiento del producto. Ninguna garantía del producto o rendimiento del sistema es expresada o implicita, a menos que no sea proporcionada en una garantía del producto un representante autorizado de Hydranautics. Los cálculos de la presión de alimentación aplicada son las mejores estimaciones para a un el dimensionamiento de la bomba de alta de alta presión y no son una garantía de la presión actual de operación durante la vida del producto. Las presiones calculadas contienen un margen de seguridad para asegurar que las bombas de alimentación sean apropiadamente dimensionadas basándose en la información proporcionada. El margen de seguridad incluye factores para un ratio normal de ensuciamiento de la membrana durante la vida del producto. Los cálculos para el consumo de productos químicos son las vida del producto. Los cálculos para el consumo de productos químicos son proporcionados para la conveniencia y están basados en varias hipótesis acerca de la calidad y la composición del agua de alimentación. Como la cantidad de reactivos químicos necesarios para el ajuste de pH es dependiente del agua de alimentación y no es dependiente de la membrana, Hydranautics no garantiza el consumo de reactivos químico. Si se requiere una garantía de sistema o producto, por favor póngase en contacto con representantes de Hydranautics. Las garantías no estándar o ampliadas, pueden resultar en precios diferentes a los precios cotizados anteriormente. (27/37)

Programa O.I. licenciado a:

Cálculo creado por:

Proyecto: Caudal de Permeado: 387,10 m3/hr proyecto Presión Alim.: 11,2 bar Tasa recuperación perm: 90,0 % 16,0 C(61F) Temp. Agua Alim.: pH Agua Alim.: Edad de las Membranas: 0,0 años 8,1 NaOH Dosis Químico, ppm (100%) 0,8 Disminución flux %/año: 0,0 % Fouling factor: 1,00 Incremento paso sales, 0,0

%/año:

Flux promedio: 24,6 lm2hr Tipo de Alimentación: Agua de mar - toma abierta

Etapa	Perm.	Cauda	al/tubo	Flux	Beta	Conc.&	Contra.	Elemento	Elem.	Arreglo
	Caudal	Alim.	Conc.			Pres	iones	Tipo	Nο	
	m3/hr	m3/hr	m3/hr	l/m2-hr		bar	bar			
2-1	273,7	11,3	4,1	25,2	1,20	9,4	1,5	ESPAB MAX	266	38x7
2-2	113,5	9,2	2,5	23,3	1,30	8,0	0,0	ESPAB MAX	119	17x7

	Agua cr	uda 2	Agua A	lim. 2	Perme	ado 2	Conc	. 2
lón	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l
Ca	0,4	0,0	0,4	0,0	0,001	0,0	4,1	0,2
Mg	1,4	0,1	1,4	0,1	0,005	0,0	14,0	1,2
Na	54,1	2,4	55,1	2,4	0,916	0,0	542,3	23,6
K	3,8	0,1	3,8	0,1	0,078	0,0	37,0	0,9
NH4	0,0	0,0	0,0	0,0	0,000	0,0	0,0	0,0
Ва	0,000	0,0	0,000	0,0	0,000	0,0	0,000	0,0
Sr	0,006	0,0	0,006	0,0	0,000	0,0	0,059	0,0
CO3	0,0	0,0	0,0	0,0	0,000	0,0	0,1	0,0
HCO3	1,2	0,0	2,4	0,0	0,070	0,0	23,3	0,4
SO4	3,1	0,1	3,1	0,1	0,013	0,0	30,4	0,6
CI	88,6	2,5	88,6	2,5	1,447	0,0	873,1	24,6
F	0,0	0,0	0,0	0,0	0,000	0,0	0,1	0,0
NO3	0,0	0,0	0,0	0,0	0,003	0,0	0,3	0,0
В	0,64		0,64		0,26	·	4,03	
SiO2	0,0		0,0		0,000		0,0	
CO2	0,94		0,03		0,03		0,03	
TDS	153,2		155,4		2,79		1529,0	
На	6.4		8.1		6.7		9.1	

	Agua cruda	Agua Alim.	Conc.
CaSO4 / Ksp * 100:	0%	0%	0%
SrSO4 / Ksp * 100:	0%	0%	0%
BaSO4 / Ksp * 100:	0%	0%	0%
Sat. SiO2:	0%	0%	0%
Indice Sat. de Langelier	-5,68	-3,64	-0,76
Indice Sat. de Stiff & Davis	-5,71	-3,66	-0,80
Fuerza iónica	0,00	0,00	0,03
Presión osmótica	0,1 bar	0,1 bar	1,1 bar

Flux promedio:	14.1	24.6	lm2hr	%/año: Tipo de Alimentación:	Agua de mar -		
				Incremento paso sales,	10,0	0,0	
				Fouling factor:	1,00	1,00	
Dosis Químico, ppm, ppm	0,0	0,8		Disminución flux %/año:	7,0	0,0	
pH Agua Alim.:	8,1	8,1		Edad de las Membranas:		0,0	años
Temp. Agua Alim.:		16,0	C(61F)	Recup. total sistema:		43,2	%
Presión Alim.:	57,3	11,2	bar	Recuperación:	45,0	90,0	%
Caudal bomba alta pres:	1365,6	430,1	m3/hr	Caudal agua cruda:		1322,4	m3/hr
Proyecto:	proyecto			Caudal de Permeado:	614,44	387,10	m3/hr
Cálculo creado por:				Caudal mezcla:		- ,	m3/hr
Programa O.I. licenciado a:							

**** LOS SIGUIENTES PARÁMETROS EXCEDEN LOS LÍMITES DEL DISENO: ***

Indice Langelier de saturación muy alto en Conc. (2,03)

Directrices generales para diseñar un sistema sistema de ósmosis utilizando membranas Hydranautics. Por favor consulte a Hydranautics para recomendaciones específicas fuera de las recomendaciones señaladas

Límites caudal de la Alim. y del Conc.

Diámetro elemento Caudal máx. de la Alim. Caudal mínimo de Conc. 75 gpm (283.9 lpm) 12 gpm (45.4 lpm) 8.0 pulg 8.0 pulg(Full Fit) 75 gpm (283.9 lpm) 30 gpm (113.6 lpm)

Factor Beta no debe superar 1.2 para las membranas convencionales

Límites de saturación para sales poco solubles en Conc.

Sal soluble Saturación BaSO4 6000% CaSO4 230% SrSO4 800% SiO2 100%

El Índ.de Sat.de Langelier para el Conc. no debe exceder1,8

Los lím. antes indicados aplican sólo si se utiliza un inhib.de incrust.efectivo. Sin inhibidor, la saturación en el Concentrado no debe superar 100%

Programa O.I. licenciado a:							
Cálculo creado por:				Caudal mezcla:		571,4	m3/hr
Proyecto:	proyecto			Caudal de Permeado:	617,76	416,99	m3/hr
Caudal bomba alta pres:	1372,9	463,3	m3/hr	Caudal agua cruda:		1326,5	m3/hr
Presión Alim.:	61,3	12,2	bar	Recuperación:	45,0	90,0	%
Temp. Agua Alim.:		16,0	C(61F)	Recup. total sistema:		43,1	%
pH Agua Alim.:	8,1	8,1		Edad de las Membranas:		3,6	años
Dosis Químico, ppm, ppm	0,0	0,8		Disminución flux %/año:	7,0	0,0	
				Fouling factor:	0,80	1,00	
				Incremento paso sales,	10,0	0,0	
				%/año:			

Flux promedio:		14,1	26,5 lm2h	r Tipo	de Alimentación:	Agua de mar	Agua de mar - toma abierta	
Etapa	Perm.	Caudal/tubo	Flux	Beta	Conc.&Contra.	Elemento	Elem.	Ar

Perm.	Cauda	al/tubo	Flux	Beta	Conc.&	Contra.	Elemento	Elem.	Arreglo
Caudal	Alim.	Conc.			Presi	iones	Tipo	Nο	
m3/hr	m3/hr	m3/hr	l/m2-hr		bar	bar			
617,8	8,2	4,5	14,1	1,02	60,1	0,0	SWC5	1176	168x7
297,2	12,2	4,4	27,3	1,21	10,2	1,5	ESPAB MAX	266	38x7
119,8	9,8	2,7	24,6	1,28	8,6	0,0	ESPAB MAX	119	17x7
	Caudal m3/hr 617,8 297,2	Caudal Alim. m3/hr m3/hr 617,8 8,2 297,2 12,2	Caudal Alim. Conc. m3/hr m3/hr m3/hr 617,8 8,2 4,5 297,2 12,2 4,4	Caudal Alim. Conc. m3/hr m3/hr m3/hr l/m2-hr 617,8 8,2 4,5 14,1 297,2 12,2 4,4 27,3	Caudal Alim. Conc. m3/hr m3/hr m3/hr l/m2-hr 617,8 8,2 4,5 14,1 1,02 297,2 12,2 4,4 27,3 1,21	Caudal Alim. Conc. Pres m3/hr m3/hr l/m2-hr bar 617,8 8,2 4,5 14,1 1,02 60,1 297,2 12,2 4,4 27,3 1,21 10,2	Caudal Mim. m3/hr Conc. m3/hr Presiones bar bar bar bar bar 517,8 617,8 8,2 4,5 14,1 1,02 60,1 0,0 297,2 12,2 4,4 27,3 1,21 10,2 1,5	Caudal Alim. Conc. Presiones Tipo m3/hr m3/hr l/m2-hr bar bar 617,8 8,2 4,5 14,1 1,02 60,1 0,0 SWC5 297,2 12,2 4,4 27,3 1,21 10,2 1,5 ESPAB MAX	Caudal Alim. Conc. Presiones Tipo N° m3/hr m3/hr l/m2-hr bar bar 617,8 8,2 4,5 14,1 1,02 60,1 0,0 SWC5 1176 297,2 12,2 4,4 27,3 1,21 10,2 1,5 ESPAB MAX 266

	Agua d	ruda	Agua /	Alim.	Perm	eado	Con	C.
lón	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l
Ca	442,0	22,0	427,3	21,3	0,150	0,0	776,4	38,7
Mg	1499,0	123,4	1449,1	119,3	0,508	0,0	2633,1	216,7
Na	12020,0	522,6	11639,4	506,1	20,227	0,9	21103,8	917,6
K	671,0	17,2	650,1	16,7	1,425	0,0	1177,8	30,2
NH4	0,1	0,0	0,1	0,0	0,000	0,0	0,2	0,0
Ba	0,006	0,0	0,006	0,0	0,000	0,0	0,011	0,0
Sr	6,362	0,1	6,150	0,1	0,002	0,0	11,175	0,3
CO3	13,7	0,5	13,3	0,4	0,002	0,0	24,2	0,8
HCO3	163,3	2,7	158,7	2,6	0,479	0,0	287,3	4,7
SO4	3056,0	63,7	2954,3	61,5	1,107	0,0	5368,1	111,8
CI	22157,0	625,0	21449,7	605,1	33,106	0,9	38903,2	1097,4
F	1,5	0,1	1,5	0,1	0,005	0,0	2,6	0,1
NO3	1,0	0,0	1,0	0,0	0,014	0,0	1,7	0,0
В	5,30		5,31		0,467		8,95	
SiO2	1,0		1,0		0,00		1,8	
CO2	0,97		0,94		0,28		0,04	
TDS	40037,3		38756,7		57,49		70300,4	
pН	8,1		8,1		7,2		8,6	

Agua cruda	Agua Alim.	Conc.
25%	24%	50%
22%	21%	45%
32%	30%	63%
1%	1%	1%
1,10	1,08	2,03
0,19	0,17	1,05
0,79	0,77	1,39
28,3 bar	27,4 bar	49,6 bar
	25% 22% 32% 1% 1,10 0,19 0,79	25% 24% 22% 21% 32% 30% 1% 1% 1,10 1,08 0,19 0,17 0,79 0,77

Presión Alim.: 61, Temp. Agua Alim.: pH Agua Alim.: 8, Dosis Químico, ppm, ppm 0,			oyecto 1372,9 61,3 8,1 0,0	463,3 12,2 16,0 8,1 0,8	m3/hr bar C(61F)	Cauda Cauda Recup Recup Edad o Dismir Fouling	al mezcla: al de Perme al agua cru- eración: a. total siste de las Men nución flux g factor: nento paso	da: ema: nbranas: %/año:		7,76 45,0 7,0 0,80 10,0	571,4 416,99 1326,5 90,0 43,1 3,6 0,0 1,00 0,0	m3/hr
Flux promedi	0:		14,1	26,5	lm2hr		e Alimenta	ción:	Agua de	e mar - t	oma abiert	a
Etapa	Perm. Caudal m3/hr	Cauda Alim. m3/hr	al/tubo Conc. m3/hr	Flux I/m2-		Beta	Conc.&C Presic bar		Elemen Tipo	ito	Elem. Nº	Arreglo
1-1 2-1 2-2	617,8 297,2 119,8	8,2 12,2 9,8	4,5 4,4 2,7	14, 27, 24,	1 1 3 1	I,02 I,21 I,28	60,1 10,2 8,6	0,0 1,5 0,0	SWC5 ESPAB N ESPAB N	ЛΑХ	1176 266 119	168x7 38x7 17x7
etapa Elem Nº	n Alim. pres Bar	Pres gota Bar	Perm flujo m3/hr	Perm Flux I/m2h	Beta	Perm sal SDT (ppm)	Conc. osm pres	CaSO4	Saturació SrSO4	n en Coi BaSO4		Lang.
1-1 1 1-1 2 1-1 3 1-1 4 1-1 5 1-1 6 1-1 7	61,3 61,1 60,9 60,7 60,5 60,3 60,2	0,3 0,2 0,2 0,2 0,2 0,1 0,1	0,9 0,8 0,6 0,5 0,4 0,3 0,2	24,1 20,3 16,6 13,3 10,5 8,0 6,2	1,04 1,04 1,03 1,03 1,02 1,02 1,02	89,1 102,4 118,0 135,7 155,4 178,2 202,5	30,7 34,3 37,8 41,3 44,5 47,3 49,7	27 31 36 40 44 47 50	25 28 32 36 39 42 45	35 40 45 50 55 59 63	1 1 1 1 1 1	1,6 1,7 1,8 1,8 1,9 1,9
2-1 1 2-1 2 2-1 3 2-1 4 2-1 5 2-1 6 2-1 7	12,2 11,7 11,3 11,0 10,7 10,5 10,3	0,5 0,4 0,3 0,3 0,2 0,2 0,1	1,3 1,2 1,1 1,1 1,1 1,0 1,0	31,3 29,2 28,1 27,1 26,2 25,5 24,8	1,10 1,10 1,12 1,13 1,15 1,17 1,21	1,3 1,4 1,6 1,7 1,8 1,9 2,1	0,2 0,2 0,2 0,2 0,3 0,3 0,4	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	-3,3 -3,2 -3,0 -2,8 -2,6 -2,4 -2,2
2-2 1 2-2 2 2-2 3 2-2 4 2-2 5 2-2 6 2-2 7	10,0 9,6 9,4 9,1 9,0 8,8 8,7	0,3 0,3 0,2 0,2 0,1 0,1	1,1 1,1 1,0 1,0 1,0 0,9 0,9	27,7 26,6 25,6 24,7 23,7 22,7 21,5	1,12 1,10 1,14 1,17 1,19 1,23 1,29	2,2 2,2 2,4 2,5 2,8 3,1 3,5	0,5 0,6 0,6 0,8 0,9 1,2 1,6	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	-2,0 -1,8 -1,6 -1,4 -1,2 -0,9 -0,5
Etapa NE ba 1-1 22 2-1 9,	ar ,4											

9,9 8,4 2-2

Los cálculos de rendimiento del producto están basados en el rendimiento nominal del elemento de membrana, funcionando con agua de alimentación de una calidad aceptable. Los resultados mostrados en los listados creados por este programa son estimaciones del rendimiento del producto. Ninguna garantía del producto o rendimiento del sistema es expresada o implícita, a menos que no sea proporcionada en una garantía separada firmada por un representante autorizado de Hydranautics. Los cálculos de la presión de alimentación aplicada son las mejores estimaciones para asistir al cliente en el dimensionamiento de la bomba de alta de alta presión y no son una garantía de la presión actual de operación durante la vida del producto. Las presiones calculadas contienen un margen de seguridad para asegurar que las bombas de alimentación sean apropiadamente dimensionadas basándose en la información proprocionada. El margen de seguridad incluye factores para un ratio normal de ensuciamiento de la membrana durante la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Como la cantidad de reactivos químicos son para el ajuste de pH es dependiente del agua de alimentación y no es dependiente de la membrana, Hydranautics no garantiza el consumo de reactivos químicos son se require una garantía de sistema o producto, por favor póngase en contacto con representantes de Hydranautics. Las garantías no estándar o ampliadas, pueden resultar en precios diferentes a los precios cotizados anteriormente.

Programa O.I. licenciado a:

Cálculo creado por:

Proyecto: Caudal de Permeado: 617,76 m3/hr proyecto Caudal bomba alta pres: 1372,9 m3/hr Caudal agua cruda: 1326,5 m3/hr Presión Alim.: Tasa recuperación perm: 45,0 % 61,3 bar Temp. Agua Alim.: 16,0 C(61F) pH Agua Alim.: 8,1 Edad de las Membranas: 3,6 años Dosis Químico,ppm (100%) 0,0 H2SO4 Disminución flux %/año: 7,0 % 0,80 Fouling factor: Incremento paso sales, 10,0

%/año:

Flux promedio: 14,1 lm2hr Tipo de Alimentación: Agua de mar - toma abierta

Etapa	Perm.	Caudal/tubo		dal/tubo Flux Beta	Beta	Conc.&	Contra.	Elemento	Elem.	Arreglo
·	Caudal	Alim.	Conc.			Pres	iones	Tipo	Nο	
	m3/hr m3/hr	m3/hr	l/m2-hr		bar	bar	•			
1-1	617,8	8,2	4,5	14,1	1,02	60,1	0.0	SWC5	1176	168x7

	Agua cr	uda 1	Agua A	lim. 1	Perme	ado 1	Conc	:. 1
lón	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l
Ca	442,0	22,0	427,3	21,3	0,55	0,0	776,4	38,7
Mg	1499,0	123,4	1449,1	119,3	1,86	0,0	2633,1	216,7
Na	12020,0	522,6	11639,4	506,1	71,78	0,9	21103,8	917,6
K	671,0	17,2	650,1	16,7	5,01	0,0	1177,8	30,2
NH4	0,1	0,0	0,1	0,0	0,00	0,0	0,2	0,0
Ba	0,006	0,0	0,006	0,0	0,000	0,000	0,011	0,0
Sr	6,362	0,1	6,150	0,1	0,008	0,000	11,175	0,3
CO3	13,7	0,5	13,3	0,4	0,01	0,0	24,2	0,8
HCO3	163,3	2,7	158,7	2,6	1,57	0,0	287,3	4,7
SO4	3056,0	63,7	2954,3	61,5	4,05	0,0	5368,1	111,8
CI	22157,0	625,0	21449,7	605,1	117,64	0,9	38903,2	1097,4
F	1,5	0,1	1,5	0,1	0,02	0,0	2,6	0,1
NO3	1,0	0,0	1,0	0,0	0,04	0,0	1,7	0,0
В	5,30		5,31		0,85		8,95	
SiO2	1,0		1,0		0,00		1,8	
CO2	0,97		0,94		0,94		0,94	
TDS	40037,3		38756,7		203,4		70300,4	
pН	8,1		8,1		6,5		8,6	

	Agua cruda	Agua Alim.	Conc.
CaSO4 / Ksp * 100:	25%	24%	50%
SrSO4 / Ksp * 100:	22%	21%	45%
BaSO4 / Ksp * 100:	32%	30%	63%
Sat. SiO2:	1%	1%	1%
Indice Sat. de Langelier	1,10	1,08	2,03
Indice Sat. de Stiff & Davis	0,19	0,17	1,05
Fuerza iónica	0,79	0,77	1,39
Presión osmótica	28,3 bar	27,4 bar	49,6 bar

Los cálculos de rendimiento del producto están basados en el rendimiento nominal del elemento de membrana, funcionando con agua de alimentación de una calidad aceptable. Los resultados mostrados en los listados creados por este programa son estimaciones del rendimiento del producto. Ninguna garantia del producto o rendimiento del sistema es expresada o implicita, a menos que no sea proporcionada en una garantia separada firmada por un representante autorizado de Hydranautics. Los cálculos de la presión de alimentación aplicada son las mejores estimaciones para asistir al cliente en el dimensionamiento del la bomba de alta presión y no son una garantía de la presión actual de operación durante la vida del producto. Las presiones calculadas contienen un margen de seguridad para asegurar que las bombas de alimentación sean apropiadamente no son una garantia de la presion acuar de operación proporcionada. El margen de seguridad para asegurar que las bombas de alimentación sean apropiadamente dimensionadas basándose en la información proporcionada. El margen de seguridad incluye factores para un ratio normal de ensuciamiento de la membrana durante la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Como la cantidad de reactivos químicos sen apropiadamente del agua de alimentación. Como la cantidad de reactivos químicos necesarios para el ajuste de pH es dependiente del agua de alimentación, y no es dependiente de la membrana, Hydranautics no garantiza el consumo de reactivos químicos. Si se requiere una garantía de sistema o producto, por favor póngase en contacto con representantes de Hydranautics. Las garantías no estándar o ampliadas, pueden resultar en precios diferentes a los precios cotizados anteriormente. (27/37)

Programa O.I. licenciado a:

Cálculo creado por:

Proyecto: Caudal de Permeado: 416,99 m3/hr proyecto Presión Alim.: 12,2 bar Tasa recuperación perm: 90,0 % Temp. Agua Alim.: 16,0 C(61F) pH Agua Alim.: Edad de las Membranas: 3,6 años 8,1 NaOH Dosis Químico, ppm (100%) 0,8 Disminución flux %/año: 0,0 % Fouling factor: 1,00 Incremento paso sales, 0,0

%/año:

Flux promedio: Tipo de Alimentación: 26,5 lm2hr Agua de mar - toma abierta

Etapa	Perm.	Cauda	al/tubo	Flux	Beta	Beta Conc.&Contra. Presiones		Elemento	Elem.	Arreglo
	Caudal	Alim.	Conc.					Tipo	Nο	
	m3/hr	m3/hr	m3/hr	l/m2-hr		bar	bar			
2-1	297,2	12,2	4,4	27,3	1,21	10,2	1,5	ESPAB MAX	266	38x7
2-2	119,8	9,8	2,7	24,6	1,29	8,6	0,0	ESPAB MAX	119	17x7

	Agua cr	uda 2	Agua A	lim. 2	Perme	ado 2	Conc	. 2
lón	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l
Ca	0,5	0,0	0,5	0,0	0,002	0,0	5,5	0,3
Mg	1,9	0,2	1,9	0,2	0,006	0,0	18,6	1,5
Na	71,8	3,1	72,8	3,2	1,134	0,0	717,5	31,2
K	5,0	0,1	5,0	0,1	0,097	0,0	49,2	1,3
NH4	0,0	0,0	0,0	0,0	0,000	0,0	0,0	0,0
Ва	0,000	0,0	0,000	0,0	0,000	0,0	0,000	0,0
Sr	0,008	0,0	0,008	0,0	0,000	0,0	0,079	0,0
CO3	0,0	0,0	0,0	0,0	0,000	0,0	0,2	0,0
HCO3	1,6	0,0	2,8	0,0	0,076	0,0	27,2	0,4
SO4	4,1	0,1	4,1	0,1	0,016	0,0	40,4	0,8
CI	117,6	3,3	117,6	3,3	1,798	0,1	1160,2	32,7
F	0,0	0,0	0,0	0,0	0,000	0,0	0,2	0,0
NO3	0,0	0,0	0,0	0,0	0,004	0,0	0,4	0,0
В	0,85		0,85		0,33	·	5,55	
SiO2	0,0		0,0		0,000		0,0	
CO2	0,94		0,04		0,04		0,04	
TDS	203,4		205,6		3,46		2025,0	
На	6.5		8.1		6.7		9.1	

	Agua cruda	Agua Alim.	Conc.
CaSO4 / Ksp * 100:	0%	0%	0%
SrSO4 / Ksp * 100:	0%	0%	0%
BaSO4 / Ksp * 100:	0%	0%	0%
Sat. SiO2:	0%	0%	0%
Indice Sat. de Langelier	-5,33	-3,46	-0,59
Indice Sat. de Stiff & Davis	-5,35	-3,48	-0,65
Fuerza iónica	0,00	0,00	0,04
Presión osmótica	0,2 bar	0,2 bar	1,5 bar

Programa O.I. licenciado a:							
Cálculo creado por:				Caudal mezcla:		571,4	m3/hr
Proyecto:	proyecto			Caudal de Permeado:	617,76	416,99	m3/hr
Caudal bomba alta pres:	1372,9	463,3	m3/hr	Caudal agua cruda:		1326,5	m3/hr
Presión Alim.:	61,3	12,2	bar	Recuperación:	45,0	90,0	%
Temp. Agua Alim.:		16,0	C(61F)	Recup. total sistema:		43,1	%
pH Agua Alim.:	8,1	8,1		Edad de las Membranas:		3,6	años
Dosis Químico, ppm, ppm	0,0	0,8		Disminución flux %/año:	7,0	0,0	
				Fouling factor:	0,80	1,00	
				Incremento paso sales,	10,0	0,0	
				%/año:			
Flux promedio:	14,1	26,5	lm2hr	Tipo de Alimentación:	Agua de mar - t	oma abiert	ta

**** LOS SIGUIENTES PARÁMETROS EXCEDEN LOS LÍMITES DEL DISENO: ***

Indice Langelier de saturación muy alto en Conc. (2,03)

Directrices generales para diseñar un sistema sistema de ósmosis utilizando membranas Hydranautics. Por favor consulte a Hydranautics para recomendaciones específicas fuera de las recomendaciones señaladas

Límites caudal de la Alim. y del Conc.

Diámetro elemento Caudal máx. de la Alim. Caudal mínimo de Conc. 75 gpm (283.9 lpm) 12 gpm (45.4 lpm) 8.0 pulg 8.0 pulg(Full Fit) 75 gpm (283.9 lpm) 30 gpm (113.6 lpm)

Factor Beta no debe superar 1.2 para las membranas convencionales

Límites de saturación para sales poco solubles en Conc.

Sal soluble Saturación BaSO4 6000% CaSO4 230% 800% SrSO4 SiO2 100%

El Índ.de Sat.de Langelier para el Conc. no debe exceder1,8

Los lím. antes indicados aplican sólo si se utiliza un inhib.de incrust.efectivo. Sin inhibidor, la saturación en el Concentrado no debe superar 100%

Programa O.I. licenciado a: Cálculo creado por: Caudal mezcla: 571,4 m3/hr Proyecto: Caudal de Permeado: 618,43 423,01 m3/hr proyecto Caudal bomba alta pres: 1374,4 470,0 m3/hr Caudal agua cruda: 1327,3 m3/hr 90,0 Presión Alim.: 56,0 10,7 bar Recuperación: 45,0 % Temp. Agua Alim.: 22,0 C(72F) Recup. total sistema: 43,0 % pH Agua Alim.: 8,1 8,8 Edad de las Membranas: 0,0 años Dosis Químico, ppm, ppm Disminución flux %/año: 7,0 0,0 0,0 1,0 Fouling factor: 1,00 1,00 Incremento paso sales, 10,0 0,0 %/año:

Flux promedio: 14,2 26,9 lm2hr Tipo de Alimentación: Agua de mar - toma abierta

Etapa	Perm.	Caudal/tubo		Perm. Caudal/tubo Flux Beta Conc.&Cont		Contra.	Elemento	Elem.	Arreglo			
-	Caudal	Alim.	Conc.			Presiones		Presiones		Tipo	Nο	_
	m3/hr	m3/hr	m3/hr	l/m2-hr		bar	bar					
1-1	618,5	8,2	4,5	14,2	1,01	54,8	0,0	SWC5	1176	168x7		
2-1	303,3	12,4	4,4	27,9	1,21	8,7	1,5	ESPAB MAX	266	38x7		
2-2	119,8	9,8	2,8	24,6	1,28	7,2	0,0	ESPAB MAX	119	17x7		

	Agua d	ruda	Agua	Alim.	Perme	eado	Con	C.
lón	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l
Ca	442,0	22,0	427,1	21,3	0,141	0,0	776,1	38,7
Mg	1499,0	123,4	1448,4	119,2	0,477	0,0	2631,9	216,6
Na	12020,0	522,6	11633,6	505,8	19,192	0,8	21094,8	917,2
K	671,0	17,2	649,7	16,7	1,356	0,0	1177,4	30,2
NH4	0,1	0,0	0,1	0,0	0,000	0,0	0,2	0,0
Ва	0,006	0,0	0,006	0,0	0,000	0,0	0,011	0,0
Sr	6,362	0,1	6,147	0,1	0,002	0,0	11,170	0,3
CO3	17,2	0,6	16,7	0,6	0,002	0,0	30,3	1,0
HCO3	163,3	2,7	158,6	2,6	0,462	0,0	287,1	4,7
SO4	3056,0	63,7	2952,9	61,5	1,040	0,0	5365,6	111,8
CI	22157,0	625,0	21439,1	604,8	31,400	0,9	38886,4	1096,9
F	1,5	0,1	1,5	0,1	0,004	0,0	2,6	0,1
NO3	1,0	0,0	1,0	0,0	0,014	0,0	1,7	0,0
В	5,30		5,29		0,494		8,93	
SiO2	1,0		1,0		0,00		1,8	
CO2	0,85		0,82		0,22		0,01	
TDS	40040,8		38741,0		54,58		70276,1	
Hq	8.1		8.1		7.5		8.6	

	Agua cruda	Agua Alim.	Conc.
CaSO4 / Ksp * 100:	24%	23%	48%
SrSO4 / Ksp * 100:	21%	20%	43%
BaSO4 / Ksp * 100:	26%	25%	51%
Sat. SiO2:	1%	1%	1%
Indice Sat. de Langelier	1,25	1,22	2,20
Indice Sat. de Stiff & Davis	0,29	0,27	1,18
Fuerza iónica	0,79	0,77	1,39
Presión osmótica	28,9 bar	27,9 bar	50,7 bar

Presión Alim.: 56, Temp. Agua Alim.: pH Agua Alim.: 8, Dosis Químico, ppm, ppm 0,			56,0 8,1 0,0	470,0 10,7 22,0 8,8 1,0	m3/hr bar C(72F)	Cauda Cauda Recup Recup Edad o Dismir Fouling	I mezcla: I de Perme I agua crue eración: . total siste de las Mem nución flux g factor: nento paso	da: ema: nbranas: %/año:		8,43 45,0 7,0 1,00 10,0	571,4 423,01 1327,3 90,0 43,0 0,0 0,0 1,00 0,0	
Flux prome	edio:		14,2	26,9	lm2hr		e Alimenta	ción:	Agua de	e mar - t	oma abiert	a
Etapa	Perm. Caudal m3/hr	Cauda Alim. m3/hr	al/tubo Conc. m3/hr	Flux I/m2-		Beta	Conc.&C Presio		Elemen Tipo	ito	Elem. Nº	Arreglo
1-1 2-1 2-2	618,5 303,3 119,8	8,2 12,4 9,8	4,5 4,4 2,8	14,2 27,9 24,6	2 1 9 1	,01 ,21 ,28	54,8 8,7 7,2	0,0 1,5 0,0	SWC5 ESPAB N ESPAB N	ЛΑХ	1176 266 119	168x7 38x7 17x7
	lem Alim. Nº pres Bar	Pres gota Bar	Perm flujo m3/hr	Perm Flux I/m2h	Beta	Perm sal SDT (ppm)	Conc. osm pres	CaSO4	Saturació SrSO4	n en Coi BaSO	ncentrado 4 SiO2	Lang.
1-1 1-1 1-1 1-1	1 56,0 2 55,7 3 55,5 4 55,3 5 55,2 6 55,0 7 54,9	0,3 0,2 0,2 0,2 0,1 0,1 0,1	1,1 0,8 0,6 0,4 0,3 0,2 0,1	29,8 22,8 16,8 12,1 8,0 5,6 3,9	1,05 1,04 1,03 1,02 1,02 1,02 1,01	69,7 84,4 101,9 121,8 145,1 170,7 197,3	32,3 36,7 40,8 44,3 47,0 49,1 50,7	27 32 36 40 43 46 48	24 28 32 36 39 41 43	30 35 39 44 47 49 51	1 1 1 1 1 1	1,8 1,9 2,0 2,0 2,1 2,1 2,1
2-1 2-1 2-1 2-1 2-1	1 10,7 2 10,3 3 9,9 4 9,6 5 9,3 6 9,1 7 8,9	0,5 0,4 0,3 0,3 0,2 0,2 0,1	1,3 1,2 1,2 1,1 1,1 1,0 1,0	32,6 30,2 28,8 27,6 26,6 25,7 24,8	1,11 1,10 1,12 1,13 1,15 1,17	1,6 1,7 1,9 2,0 2,2 2,4 2,6	0,2 0,2 0,2 0,2 0,3 0,3 0,4	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	-2,6 -2,5 -2,4 -2,3 -2,2 -2,0 -1,9
2-2 2-2 2-2 2-2 2-2	1 8,5 2 8,2 3 7,9 4 7,7 5 7,5 6 7,4 7 7,3	0,3 0,3 0,2 0,2 0,1 0,1	1,2 1,1 1,1 1,0 1,0 0,9 0,9	28,3 27,0 25,8 24,7 23,6 22,4 20,9	1,12 1,10 1,15 1,17 1,19 1,23 1,28	2,6 2,8 2,9 3,1 3,4 3,8 4,3	0,5 0,6 0,7 0,8 0,9 1,2 1,6	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	-1,8 -1,7 -1,6 -1,4 -1,3 -1,1 -0,9
•	NDP bar 16,3 8,4											

7.0 2-2

Los cálculos de rendimiento del producto están basados en el rendimiento nominal del elemento de membrana, funcionando con agua de alimentación de una calidad aceptable. Los resultados mostrados en los listados creados por este programa son estimaciones del rendimiento del producto. Ninguna garantía del producto o rendimiento del sistema es expresada o implícita, a menos que no sea proporcionada en una garantía separada firmada por un representante autorizado de Hydranautics. Los cálculos de la presión de alimentación aplicada son las mejores estimaciones para asistir al cliente en el dimensionamiento de la bomba de alta de alta presión y no son una garantía de la presión actual de operación durante la vida del producto. Las presiones calculadas contienen un margen de seguridad para asegurar que las bombas de alimentación sean apropiadamente dimensionadas basándose en la información proprocionada. El margen de seguridad incluye factores para un ratio normal de ensuciamiento de la membrana durante la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Como la cantidad de reactivos químicos son para el ajuste de pH es dependiente del agua de alimentación y no es dependiente de la membrana, Hydranautics no garantiza el consumo de reactivos químicos son se require una garantía de sistema o producto, por favor póngase en contacto con representantes de Hydranautics. Las garantías no estándar o ampliadas, pueden resultar en precios diferentes a los precios cotizados anteriormente.

Programa O.I. licenciado a:

Cálculo creado por:

Flux promedio:

Proyecto: Caudal de Permeado: 618,43 m3/hr proyecto Caudal bomba alta pres: 1374,4 m3/hr Caudal agua cruda: 1327,3 m3/hr Presión Alim.: Tasa recuperación perm: 45,0 % 56,0 bar Temp. Agua Alim.: 22,0 C(72F) pH Agua Alim.: 8,1 Edad de las Membranas: 0.0 años Dosis Químico,ppm (100%) H2SO4 Disminución flux %/año: 7,0 % 0,0 1,00 Fouling factor: Incremento paso sales, 10,0

14,2 lm2hr

%/año:
Tipo de Alimentación:
Agua de mar - toma abierta

Caudal/tubo Etapa Perm. Flux Beta Conc.&Contra. Elemento Elem. Arreglo Caudal Alim. Presiones Nο Conc. Tipo m3/hr m3/hr m3/hr I/m2-hr bar bar SWC5 1-1 618,5 8,2 4,5 14,2 1,01 54,8 1176 168x7 0,0

	Agua cr	ruda 1	Agua A	lim. 1	Permea	ado 1	Conc	. 1
lón	mg/l	meq/I	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l
Ca	442,0	22,0	427,1	21,3	0,54	0,0	776,1	38,7
Mg	1499,0	123,4	1448,4	119,2	1,81	0,0	2631,9	216,6
Na	12020,0	522,6	11633,6	505,8	69,88	0,8	21094,8	917,2
K	671,0	17,2	649,7	16,7	4,88	0,0	1177,4	30,2
NH4	0,1	0,0	0,1	0,0	0,00	0,0	0,2	0,0
Ва	0,006	0,0	0,006	0,0	0,000	0,000	0,011	0,0
Sr	6,362	0,1	6,147	0,1	0,008	0,000	11,170	0,3
CO3	17,2	0,6	16,7	0,6	0,01	0,0	30,3	1,0
HCO3	163,3	2,7	158,6	2,6	1,52	0,0	287,1	4,7
SO4	3056,0	63,7	2952,9	61,5	3,95	0,0	5365,6	111,8
CI	22157,0	625,0	21439,1	604,8	114,52	0,9	38886,4	1096,9
F	1,5	0,1	1,5	0,1	0,02	0,0	2,6	0,1
NO3	1,0	0,0	1,0	0,0	0,04	0,0	1,7	0,0
В	5,30		5,29		0,85		8,93	
SiO2	1,0		1,0		0,00		1,8	
CO2	0,85		0,82		0,82		0,82	
TDS	40040,8		38741,0		198,0		70276,1	
pН	8,1		8,1		6,5		8,6	

	Agua cruda	Agua Alim.	Conc.
CaSO4 / Ksp * 100:	24%	23%	48%
SrSO4 / Ksp * 100:	21%	20%	43%
BaSO4 / Ksp * 100:	26%	25%	51%
Sat. SiO2:	1%	1%	1%
Indice Sat. de Langelier	1,25	1,22	2,20
Indice Sat. de Stiff & Davis	0,29	0,27	1,18
Fuerza iónica	0,79	0,77	1,39
Presión osmótica	28,9 bar	27,9 bar	50,7 bar

Los cálculos de rendimiento del producto están basados en el rendimiento nominal del elemento de membrana, funcionando con agua de alimentación de una calidad aceptable. Los resultados mostrados en los listados creados por este programa son estimaciones del rendimiento del producto. Ninguna garantía del producto o rendimiento del sistema es expresada o implicita, a menos que no sea proporcionada en una garantía general separada firmada por un representante autorizado de Hydranautics. Los cálculos de la presión de alimentación aplicada son las mejores estimaciones para a issifir al cliente en el dimensionamiento de la bomba de alta de alta presión y no son una garantía de la presión actual de operación durante la vida del producto. Las presiones calculadas contienen un margen de seguridad para asegurar que las bombas de alimentación sean apropiadamente dimensionadas basándose en la información proporcionada. El margen de seguridad incluye factores para un ratio normal de ensuciamiento de la membrana durante la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Los cálculos para el consumo de productos químicos son proporcionados para la conveniencia y están basados en varias hipótesis acerca de la calidad y la composición del agua de alimentación. Como la cantidad de reactivos químicos necesarios para el ajuste de pH es dependiente del agua de alimentación y no es dependiente de la membrana, Hydranautics no garantiza el consumo de reactivos químico. Si se requiere una garantía de sistema o producto, por favor póngase en contacto con representantes de Hydranautics. Las garantías no estándar o ampliadas, pueden resultar en precios diferentes a los precios cotizados anteriormente. (27/37)

Programa O.I. licenciado a:

Cálculo creado por:

Proyecto: Caudal de Permeado: 423,01 m3/hr proyecto Presión Alim.: 10,7 bar Tasa recuperación perm: 90,0 % Temp. Agua Alim.: 22,0 C(72F) pH Agua Alim.: Edad de las Membranas: 0,0 años 8,8 NaOH Dosis Químico, ppm (100%) 1,0 Disminución flux %/año: 0,0 % Fouling factor: 1,00 Incremento paso sales, 0,0

%/año:

Flux promedio: 26,9 lm2hr Tipo de Alimentación: Agua de mar - toma abierta

Etapa	Perm.	Cauda	al/tubo	Flux	Beta	Conc.&	Contra.	Elemento	Elem.	Arreglo
	Caudal	Alim.	Conc.			Presi	iones	Tipo	Nο	
	m3/hr	m3/hr	m3/hr	l/m2-hr		bar	bar			
2-1	303,3	12,4	4,4	27,9	1,21	8,7	1,5	ESPAB MAX	266	38x7
2-2	119,8	9,8	2,8	24,6	1,28	7,2	0,0	ESPAB MAX	119	17x7

	Agua ci	ruda 2	Agua A	lim. 2	Perme	ado 2	Conc	. 2
lón	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l
Ca	0,5	0,0	0,5	0,0	0,002	0,0	5,3	0,3
Mg	1,8	0,1	1,8	0,1	0,008	0,0	18,1	1,5
Na	69,9	3,0	71,0	3,1	1,409	0,1	697,6	30,3
K	4,9	0,1	4,9	0,1	0,121	0,0	47,7	1,2
NH4	0,0	0,0	0,0	0,0	0,000	0,0	0,0	0,0
Ва	0,000	0,0	0,000	0,0	0,000	0,0	0,000	0,0
Sr	0,008	0,0	0,008	0,0	0,000	0,0	0,077	0,0
CO3	0,0	0,0	0,1	0,0	0,000	0,0	0,8	0,0
HCO3	1,5	0,0	2,6	0,0	0,089	0,0	24,8	0,4
SO4	3,9	0,1	3,9	0,1	0,019	0,0	39,3	0,8
CI	114,5	3,2	114,5	3,2	2,237	0,1	1125,0	31,7
F	0,0	0,0	0,0	0,0	0,001	0,0	0,1	0,0
NO3	0,0	0,0	0,0	0,0	0,005	0,0	0,3	0,0
В	0,85		0,85		0,37		5,12	
SiO2	0,0		0,0		0,000		0,0	
CO2	0,82		0,01		0,01		0,01	
TDS	198,0		200,3		4,26		1964,5	
На	6.5		8.8		7.5		9.8	

	Agua cruda	Agua Alim.	Conc.
CaSO4 / Ksp * 100:	0%	0%	0%
SrSO4 / Ksp * 100:	0%	0%	0%
BaSO4 / Ksp * 100:	0%	0%	0%
Sat. SiO2:	0%	0%	0%
Indice Sat. de Langelier	-5,22	-2,65	0,22
Indice Sat. de Stiff & Davis	-5,19	-2,62	0,19
Fuerza iónica	0,00	0,00	0,03
Presión osmótica	0,1 bar	0,2 bar	1,5 bar

				Fouling factor: Incremento paso sales,	1,00 10,0	1,00 0,0	
Dosis Químico, ppm, ppm	0,0	1,0		Disminución flux %/año:	7,0	0,0	
pH Agua Alim.:	8,1	8,8		Edad de las Membranas:		0,0	años
Temp. Agua Alim.:		22,0	C(72F)	Recup. total sistema:		43,0	%
Presión Alim.:	56,0	10,7	bar	Recuperación:	45,0	90,0	%
Caudal bomba alta pres:	1374,4	470,0	m3/hr	Caudal agua cruda:		1327,3	m3/hr
Proyecto:	proyecto			Caudal de Permeado:	618,43	423,01	m3/hr
Programa O.I. licenciado a: Cálculo creado por:				Caudal mezcla:		571,4	m3/hr

**** LOS SIGUIENTES PARÁMETROS EXCEDEN LOS LÍMITES DEL DISENO: ***

Indice Langelier de saturación muy alto en Conc. (2,20)

Directrices generales para diseñar un sistema sistema de ósmosis utilizando membranas Hydranautics. Por favor consulte a Hydranautics para recomendaciones específicas fuera de las recomendaciones señaladas

Límites caudal de la Alim. y del Conc.

Diámetro elemento Caudal máx. de la Alim. Caudal mínimo de Conc. 75 gpm (283.9 lpm) 12 gpm (45.4 lpm) 8.0 pulg 8.0 pulg(Full Fit) 75 gpm (283.9 lpm) 30 gpm (113.6 lpm)

Factor Beta no debe superar 1.2 para las membranas convencionales

Límites de saturación para sales poco solubles en Conc.

Sal soluble Saturación BaSO4 6000% CaSO4 230% SrSO4 800% SiO2 100%

El Índ.de Sat.de Langelier para el Conc. no debe exceder1,8

Los lím. antes indicados aplican sólo si se utiliza un inhib.de incrust.efectivo. Sin inhibidor, la saturación en el Concentrado no debe superar 100%

Programa O.I. licenciado a: Cálculo creado por: Caudal mezcla: 571,4 m3/hr Proyecto: Caudal de Permeado: 625,88 490,06 m3/hr proyecto Caudal bomba alta pres: 1391,0 544,5 m3/hr Caudal agua cruda: 1336,3 m3/hr Presión Alim.: 59,0 12,4 bar Recuperación: 45,0 90,0 % Temp. Agua Alim.: 22,0 C(72F) Recup. total sistema: 42,8 % pH Agua Alim.: 8,1 9,0 Edad de las Membranas: 3,6 años Dosis Químico, ppm, ppm Disminución flux %/año: 7,0 0,0 0,0 1,1 Fouling factor: 0,80 1,00 Incremento paso sales, 10,0 0,0 %/año:

Flux promedio: 14,3 31,1 lm2hr Tipo de Alimentación: Agua de mar - toma abierta

Etapa	Perm.	Cauda	al/tubo	Flux	Beta	Conc.&	Contra.	Elemento	Elem.	Arreglo
	Caudal	Alim.	Conc.			Presi	ones	Tipo	Nο	
	m3/hr	m3/hr	m3/hr	l/m2-hr		bar	bar			
1-1	625,9	8,3	4,6	14,3	1,01	57,7	0,0	SWC5	1176	168x7
2-1	355,9	14,3	5,0	32,7	1,21	10,0	1,5	ESPAB MAX	266	38x7
2-2	134.2	11.1	3.2	27.6	1.26	8.2	0.0	ESPAB MAX	119	17x7

	Agua o	cruda	Agua A	Alim.	Perm	eado	Con	C.
lón	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l
Ca	442,0	22,0	425,0	21,2	0,102	0,0	772,1	38,5
Mg	1499,0	123,4	1441,3	118,6	0,347	0,0	2618,6	215,5
Na	12020,0	522,6	11586,6	503,8	14,551	0,6	20991,6	912,7
K	671,0	17,2	647,3	16,6	1,040	0,0	1171,6	30,0
NH4	0,1	0,0	0,1	0,0	0,000	0,0	0,2	0,0
Ва	0,006	0,0	0,006	0,0	0,000	0,0	0,010	0,0
Sr	6,362	0,1	6,117	0,1	0,001	0,0	11,114	0,3
CO3	17,2	0,6	16,6	0,6	0,002	0,0	30,2	1,0
HCO3	163,3	2,7	158,1	2,6	0,369	0,0	285,8	4,7
SO4	3056,0	63,7	2938,5	61,2	0,758	0,0	5338,4	111,2
CI	22157,0	625,0	21349,7	602,2	23,777	0,7	38694,7	1091,5
F	1,5	0,1	1,4	0,1	0,004	0,0	2,6	0,1
NO3	1,0	0,0	1,0	0,0	0,013	0,0	1,7	0,0
В	5,30		5,39		0,499		8,87	
SiO2	1,0		1,0		0,00		1,7	
CO2	0,85		0,82		0,12		0,00	
TDS	40040,8		38578,0		41,46		69929,3	
pΗ	8,1		8,1		7,6		8,6	

	Agua cruda	Agua Alim.	Conc.
CaSO4 / Ksp * 100:	24%	22%	47%
SrSO4 / Ksp * 100:	21%	20%	42%
BaSO4 / Ksp * 100:	26%	25%	51%
Sat. SiO2:	1%	1%	1%
Indice Sat. de Langelier	1,25	1,22	2,19
Indice Sat. de Stiff & Davis	0,29	0,27	1,18
Fuerza iónica	0,79	0,76	1,39
Presión osmótica	28,9 bar	27,8 bar	50,4 bar

Los cálculos de rendimiento del producto están basados en el rendimiento nominal del elemento de membrana, funcionando con agua de alimentación de una calidad aceptable. Los resultados mostrados en los listados creados por este programa son estimaciones del rendimiento del producto. Ninguna garantía ele producto o rendimiento del sistema es expresada o implícita, a menos que no sea proporcionada en una garantía separada firmada por un representante autorizado de Hydranautics. Los cálculos de la presión a elimentación aplicada son las mejores estimaciones para asistir al cliente en el dimensionamiento de la bomba de alta presión y no son una garantía de la presión actual de operación durante la vida del producto. Las presiones calculadas contienen un margen de seguridad para asegurar que las bombas de alimentación sean apropiadamente no son una garantia de la presion acuar de operación proporcionada. El margen de seguridad para asegurar que las bombas de alimentación sean apropiadamente dimensionadas basándose en la información proporcionada. El margen de seguridad incluye factores para un ratio normal de ensuciamiento de la membrana durante la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Como la cantidad de reactivos químicos necesarios para el ajuste de pH es dependiente del agua de alimentación. Como la cantidad de reactivos químicos necesarios para el ajuste de pH es dependiente del agua de alimentación y no es dependiente de la membrana, Hydranautics no garantiza el consumo de reactivos químicos. Si se requiere una garantía de sistema o producto, por favor póngase en contacto con representantes de Hydranautics. Las garantías no estándar o ampliadas, pueden resultar en precios diferentes a los precios cotizados anteriormente. (27/37)

Cálculo Proyect Caudal Presión Temp. A pH Agu	bomba a Alim.: Agua Alir	por: alta pres m.:	pro	oyecto 1391,0 59,0 8,1 0,0	544,5 12,4 22,0 9,0 1,1	m3/hr bar C(72F)	Cauda Cauda Recup Recup Edad o Dismir Fouling	I mezcla: I de Perme I agua crue eración: . total siste de las Men aución flux g factor: eento paso	da: ema: hbranas: %/año:		5,88 45,0 7,0 0,80 10,0	,	m3/hr m3/hr m3/hr % % años
Flux pro	medio:			14,3	31,1	lm2hr		e Alimenta	ción:	Agua de	e mar - t	oma abier	ta
Etapa	Ca	erm. udal 3/hr	Cauda Alim. m3/hr	al/tubo Conc. m3/hr	Flu: l/m2-		3eta	Conc.&C Presio		Elemen Tipo	to	Elem. Nº	Arreglo
1-1 2-1 2-2	62 35	25,9 55,9 34,2	8,3 14,3 11,1	4,6 5,0 3,2	14,3 32,7 27,0	3 <i>′</i> 7	1,01 1,21 1,26	57,7 10,0 8,2	0,0 1,5 0,0	SWC5 ESPAB N ESPAB N	ИAX	1176 266 119	168x7 38x7 17x7
etapa	Elem Nº	Alim. pres Bar	Pres gota Bar	Perm flujo m3/hr	Perm Flux I/m2h	Beta	Perm sal SDT (ppm)	Conc. osm pres	CaSO4	Saturació SrSO4	n en Co BaSO	ncentrado 4 SiO2	Lang.
1-1 1-1 1-1 1-1 1-1 1-1	1 2 3 4 5 6 7	59,0 58,7 58,5 58,3 58,1 58,0 57,9	0,3 0,2 0,2 0,2 0,1 0,1	1,0 0,8 0,6 0,5 0,4 0,3 0,2	26,6 21,6 17,0 13,0 9,6 7,1 5,3	1,05 1,04 1,03 1,02 1,02 1,02 1,02	104,1 122,2 143,4 167,6 195,3 226,3 258,9	31,6 35,5 39,3 42,8 45,8 48,3 50,4	26 30 35 39 42 45	24 27 31 34 38 40 42	29 33 38 42 45 49 51	1 1 1 1 1 1	1,8 1,9 1,9 2,0 2,1 2,1 2,1
2-1 2-1 2-1 2-1 2-1 2-1 2-1	1 2 3 4 5 6 7	12,4 11,9 11,4 11,0 10,7 10,4 10,2	0,6 0,5 0,4 0,3 0,3 0,2 0,2	1,6 1,5 1,4 1,3 1,3 1,2	38,7 35,6 33,9 32,4 31,1 30,0 28,9	1,11 1,10 1,13 1,14 1,15 1,18 1,21	1,7 1,9 2,1 2,2 2,4 2,6 2,8	0,2 0,3 0,3 0,3 0,4 0,5 0,6	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	-2,2 -2,1 -2,0 -1,9 -1,8 -1,6 -1,5
2-2 2-2 2-2 2-2 2-2 2-2 2-2	1 2 3 4 5 6 7	9,8 9,4 9,1 8,8 8,6 8,5 8,3	0,4 0,3 0,3 0,2 0,2 0,1 0,1	1,3 1,2 1,2 1,1 1,1 1,0 0,9	32,2 30,6 29,1 27,7 26,3 24,7 22,9	1,12 1,10 1,15 1,17 1,19 1,22 1,27	2,9 3,1 3,3 3,6 4,0 4,6 5,3	0,7 0,8 0,9 1,0 1,3 1,6 2,1	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	-1,4 -1,3 -1,2 -1,0 -0,9 -0,7 -0,5
Etapa 1-1 2-1 2-2	NDP bar 19,6 9,8 7,8												

Los cálculos de rendimiento del producto están basados en el rendimiento nominal del elemento de membrana, funcionando con agua de alimentación de una calidad aceptable. Los resultados mostrados en los listados creados por este programa son estimaciones del rendimiento del producto. Ninguna garantía del producto o rendimiento del sistema es expresada o implicita, a menos que no sea proporcionada en una garantía separada firmada por un representante autorizado de Hydranautics. Los cálculos de la presión de alimentación aplicada son las mejores estimaciones para asistir al cliente en el dimensionamiento de la bomba de alta de alta presión y no son una garantía de la presión actual de operación durante la vida del producto. Las presiones calculadas contienen un margen de seguridad para asegurar que las bombas de alimentación sean apropiadamentio del membrana durante la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Como la cantidad de reactivos químicos son para el ajuste de pH es dependiente del agua de alimentación y no es dependiente de la membrana, Hydranautics no garantiza el consumo de reactivos químicos son se requirer una garantía de sistema o producto, por favor póngase en contacto con representantes de Hydranautics. Las garantías no estándar o ampliadas, pueden resultar en precios diferentes a los precios cotizados anteriormente.

Programa O.I. licenciado a:

Cálculo creado por:

Flux promedio:

Proyecto: Caudal de Permeado: 625,88 m3/hr proyecto Caudal bomba alta pres: 1391,0 m3/hr Caudal agua cruda: 1336,4 m3/hr Presión Alim.: Tasa recuperación perm: 45,0 % 59,0 bar Temp. Agua Alim.: 22,0 C(72F) pH Agua Alim.: Edad de las Membranas: 3,6 años 8,1 Dosis Químico,ppm (100%) 0,0 H2SO4 Disminución flux %/año: 7,0 0,80 Fouling factor: Incremento paso sales, 10,0

14,3 lm2hr

%/año:
Tipo de Alimentación:
Agua de mar - toma abierta

Etapa	Perm.	Cauda	al/tubo	Flux	Beta	Conc.&	Contra.	Elemento	Elem.	Arreglo
•	Caudal	Alim.	Conc.			Presi	iones	Tipo	Nο	•
	m3/hr	m3/hr	m3/hr	l/m2-hr		bar	bar	·		
1-1	625,9	8,3	4,6	14,3	1,02	57,7	0,0	SWC5	1176	168x7

	Agua cr	ruda 1	Agua A	lim. 1	Perme	ado 1	Conc	. 1
lón	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l
Ca	442,0	22,0	425,0	21,2	0,70	0,0	772,1	38,5
Mg	1499,0	123,4	1441,3	118,6	2,38	0,0	2618,6	215,5
Na	12020,0	522,6	11586,6	503,8	91,64	0,6	20991,6	912,7
K	671,0	17,2	647,3	16,6	6,40	0,0	1171,6	30,0
NH4	0,1	0,0	0,1	0,0	0,00	0,0	0,2	0,0
Ва	0,006	0,0	0,006	0,0	0,000	0,000	0,010	0,0
Sr	6,362	0,1	6,117	0,1	0,010	0,000	11,114	0,3
CO3	17,2	0,6	16,6	0,6	0,01	0,0	30,2	1,0
HCO3	163,3	2,7	158,1	2,6	2,00	0,0	285,8	4,7
SO4	3056,0	63,7	2938,5	61,2	5,17	0,0	5338,4	111,2
CI	22157,0	625,0	21349,7	602,2	150,19	0,7	38694,7	1091,5
F	1,5	0,1	1,4	0,1	0,02	0,0	2,6	0,1
NO3	1,0	0,0	1,0	0,0	0,05	0,0	1,7	0,0
В	5,30		5,39		1,13		8,87	
SiO2	1,0		1,0		0,01		1,7	
CO2	0,85		0,82		0,82		0,82	
TDS	40040,8		38578,0		259,7		69929,3	
pН	8,1		8,1		6,6		8,6	

	Agua cruda	Agua Alim.	Conc.
CaSO4 / Ksp * 100:	24%	22%	47%
SrSO4 / Ksp * 100:	21%	20%	42%
BaSO4 / Ksp * 100:	26%	25%	51%
Sat. SiO2:	1%	1%	1%
Indice Sat. de Langelier	1,25	1,22	2,19
Indice Sat. de Stiff & Davis	0,29	0,27	1,18
Fuerza iónica	0,79	0,76	1,39
Presión osmótica	28,9 bar	27,8 bar	50,4 bar

Los cálculos de rendimiento del producto están basados en el rendimiento nominal del elemento de membrana, funcionando con agua de alimentación de una calidad aceptable. Los resultados mostrados en los listados creados por este programa son estimaciones del rendimiento del producto. Ninguna garantía del producto o rendimiento del sistema es expresada o implicita, a menos que no sea proporcionada en una garantía del producto un representante autorizado de Hydranautics. Los cálculos de la presión de alimentación aplicada son las mejores estimaciones para a un el dimensionamiento de la bomba de alta de alta presión y no son una garantía de la presión actual de operación durante la vida del producto. Las presiones calculadas contienen un margen de seguridad para asegurar que las bombas de alimentación sean apropiadamente dimensionadas basándose en la información proporcionada. El margen de seguridad incluye factores para un ratio normal de ensuciamiento de la membrana durante la vida del producto. Los cálculos para el consumo de productos químicos son las vida del producto. Los cálculos para el consumo de productos químicos son proporcionados para la conveniencia y están basados en varias hipótesis acerca de la calidad y la composición del agua de alimentación. Como la cantidad de reactivos químicos necesarios para el ajuste de pH es dependiente del agua de alimentación y no es dependiente de la membrana, Hydranautics no garantiza el consumo de reactivos químico. Si se requiere una garantía de sistema o producto, por favor póngase en contacto con representantes de Hydranautics. Las garantías no estándar o ampliadas, pueden resultar en precios diferentes a los precios cotizados anteriormente. (27/37)

Programa O.I. licenciado a:

Cálculo creado por:

Proyecto: Caudal de Permeado: 490,06 m3/hr proyecto Presión Alim.: 12,4 bar Tasa recuperación perm: 90,0 % Temp. Agua Alim.: 22,0 C(72F) pH Agua Alim.: 9,0 Edad de las Membranas: 3,6 años NaOH Dosis Químico, ppm (100%) 1,1 Disminución flux %/año: 0,0 % Fouling factor: 1,00 Incremento paso sales, 0,0

%/año:

Flux promedio: 31,1 lm2hr Tipo de Alimentación: Agua de mar - toma abierta

Etapa	Perm.	Cauda	al/tubo	Flux	Beta	Conc.&	Contra.	Elemento	Elem.	Arreglo
	Caudal	Alim.	Conc.			Presi	ones	Tipo	Nο	
	m3/hr	m3/hr	m3/hr	l/m2-hr		bar	bar			
2-1	355,9	14,3	5,0	32,7	1,21	10,0	1,5	ESPAB MAX	266	38x7
2-2	134,2	11,1	3,2	27,6	1,27	8,2	0,0	ESPAB MAX	119	17x7

	Agua cruda 2		Agua Alim. 2		Perme	ado 2	Cond	c. 2
lón	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l
Ca	0,7	0,0	0,7	0,0	0,003	0,0	7,0	0,3
Mg	2,4	0,2	2,4	0,2	0,009	0,0	23,7	2,0
Na	91,6	4,0	93,0	4,0	1,751	0,1	914,2	39,7
K	6,4	0,2	6,4	0,2	0,150	0,0	62,6	1,6
NH4	0,0	0,0	0,0	0,0	0,000	0,0	0,0	0,0
Ва	0,000	0,0	0,000	0,0	0,000	0,0	0,000	0,0
Sr	0,010	0,0	0,010	0,0	0,000	0,0	0,101	0,0
CO3	0,0	0,0	0,2	0,0	0,000	0,0	1,6	0,1
HCO3	2,0	0,0	3,0	0,0	0,098	0,0	28,8	0,5
SO4	5,2	0,1	5,2	0,1	0,024	0,0	51,5	1,1
CI	150,2	4,2	150,2	4,2	2,788	0,1	1476,8	41,7
F	0,0	0,0	0,0	0,0	0,001	0,0	0,2	0,0
NO3	0,1	0,0	0,1	0,0	0,007	0,0	0,5	0,0
В	1,13		1,13		0,40		7,72	
SiO2	0,0		0,0		0,000		0,1	
CO2	0,82		0,00		0,00		0,00	
TDS	259,7		262,2		5,23		2574,7	
Hq	6,6		9,0		7,7		10,0	

	Agua cruda	Agua Alim.	Conc.
CaSO4 / Ksp * 100:	0%	0%	0%
SrSO4 / Ksp * 100:	0%	0%	0%
BaSO4 / Ksp * 100:	0%	0%	0%
Sat. SiO2:	0%	0%	0%
Indice Sat. de Langelier	-4,88	-2,26	0,60
Indice Sat. de Stiff & Davis	-4,85	-2,23	0,55
Fuerza iónica	0,00	0,00	0,05
Presión osmótica	0,2 bar	0,2 bar	2,0 bar

Los cálculos de rendimiento del producto están basados en el rendimiento nominal del elemento de membrana, funcionando con agua de alimentación de una calidad aceptable. Los resultados mostrados en los listados creados por este programa son estimaciones del rendimiento del producto. Ninguna garantía del producto o rendimiento del sistema es expresada o implicita, a menos que no sea proporcionada en una garantía del producto un representante autorizado de Hydranautics. Los cálculos de la presión de alimentación aplicada son las mejores estimaciones para a un el dimensionamiento de la bomba de alta de alta presión y no son una garantía de la presión actual de operación durante la vida del producto. Las presiones calculadas contienen un margen de seguridad para asegurar que las bombas de alimentación sean apropiadamente dimensionadas basándose en la información proporcionada. El margen de seguridad incluye factores para un ratio normal de ensuciamiento de la membrana durante la vida del producto. Los cálculos para el consumo de productos químicos son las vida del producto. Los cálculos para el consumo de productos químicos son proporcionados para la conveniencia y están basados en varias hipótesis acerca de la calidad y la composición del agua de alimentación. Como la cantidad de reactivos químicos necesarios para el ajuste de pH es dependiente del agua de alimentación y no es dependiente de la membrana, Hydranautics no garantiza el consumo de reactivos químico. Si se requiere una garantía de sistema o producto, por favor póngase en contacto con representantes de Hydranautics. Las garantías no estándar o ampliadas, pueden resultar en precios diferentes a los precios cotizados anteriormente. (27/37)

Programa O.I. licenciado a:							
Cálculo creado por:				Caudal mezcla:		571,4	m3/hr
Proyecto:	proyecto			Caudal de Permeado:	625,88	490,06	m3/hr
Caudal bomba alta pres:	1391,0	544,5	m3/hr	Caudal agua cruda:		1336,3	m3/hr
Presión Alim.:	59,0	12,4	bar	Recuperación:	45,0	90,0	%
Temp. Agua Alim.:		22,0	C(72F)	Recup. total sistema:		42,8	%
pH Agua Alim.:	8,1	9,0		Edad de las Membranas:		3,6	años
Dosis Químico, ppm, ppm	0,0	1,1		Disminución flux %/año:	7,0	0,0	
				Fouling factor:	0,80	1,00	
				Incremento paso sales,	10,0	0,0	
				%/año:			
Flux promedio:	14,3	31,1	lm2hr	Tipo de Alimentación:	Agua de mar -	toma abier	ta

**** LOS SIGUIENTES PARÁMETROS EXCEDEN LOS LÍMITES DEL DISENO: ***

Indice Langelier de saturación muy alto en Conc. (2,19)

Directrices generales para diseñar un sistema sistema de ósmosis utilizando membranas Hydranautics. Por favor consulte a Hydranautics para recomendaciones específicas fuera de las recomendaciones señaladas

Límites caudal de la Alim. y del Conc.

Diámetro elemento Caudal máx. de la Alim. Caudal mínimo de Conc. 75 gpm (283.9 lpm) 12 gpm (45.4 lpm) 8.0 pulg 8.0 pulg(Full Fit) 75 gpm (283.9 lpm) 30 gpm (113.6 lpm)

Factor Beta no debe superar 1.2 para las membranas convencionales

Límites de saturación para sales poco solubles en Conc.

Sal soluble Saturación BaSO4 6000% CaSO4 230% SrSO4 800% SiO2 100%

El Índ.de Sat.de Langelier para el Conc. no debe exceder1,8

Los lím. antes indicados aplican sólo si se utiliza un inhib.de incrust.efectivo. Sin inhibidor, la saturación en el Concentrado no debe superar 100%

Programa O.I. licenciado a: Cálculo creado por: Caudal mezcla: 571,4 m3/hr Proyecto: Caudal de Permeado: 621,79 453,29 m3/hr proyecto Caudal bomba alta pres: 1381,9 503,6 m3/hr Caudal agua cruda: 1331,4 m3/hr 90,0 Presión Alim.: 55,7 11,0 bar Recuperación: 45,0 % Temp. Agua Alim.: 24,0 C(75F) Recup. total sistema: 42,9 % pH Agua Alim.: 8,1 9,0 Edad de las Membranas: 0,0 años Dosis Químico, ppm, ppm Disminución flux %/año: 7,0 0,0 0,0 1,1 Fouling factor: 1,00 1,00 Incremento paso sales, 10,0 0,0 %/año:

Flux promedio: 14,2 28,8 lm2hr Tipo de Alimentación: Agua de mar - toma abierta

Etapa	Perm.	Cauda	al/tubo	Flux	Beta	Conc.&	Contra.	Elemento	Elem.	Arreglo
	Caudal	Alim.	Conc.			Presi	iones	Tipo	Nο	
	m3/hr	m3/hr	m3/hr	l/m2-hr		bar	bar	·		
1-1	621,9	8,2	4,5	14,2	1,01	54,5	0,0	SWC5	1176	168x7
2-1	327,4	13,3	4,6	30,1	1,21	8,8	1,5	ESPAB MAX	266	38x7
2-2	125.9	10.4	3.0	25.9	1.26	7.1	0.0	ESPAB MAX	119	17x7

	Agua cruda		Agua A	Alim.	Perme	eado	Cond	С.
lón	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l
Ca	442,0	22,0	426,1	21,3	0,122	0,0	774,3	38,6
Mg	1499,0	123,4	1445,1	118,9	0,412	0,0	2625,9	216,1
Na	12020,0	522,6	11610,4	504,8	16,906	0,7	21048,0	915,1
K	671,0	17,2	648,5	16,6	1,200	0,0	1174,8	30,1
NH4	0,1	0,0	0,1	0,0	0,000	0,0	0,2	0,0
Ва	0,006	0,0	0,006	0,0	0,000	0,0	0,011	0,0
Sr	6,362	0,1	6,133	0,1	0,002	0,0	11,145	0,3
CO3	18,6	0,6	17,9	0,6	0,002	0,0	32,6	1,1
HCO3	163,3	2,7	158,3	2,6	0,417	0,0	286,5	4,7
SO4	3056,0	63,7	2946,2	61,4	0,900	0,0	5353,3	111,5
CI	22157,0	625,0	21395,3	603,5	27,643	0,8	38799,2	1094,5
F	1,5	0,1	1,5	0,1	0,004	0,0	2,6	0,1
NO3	1,0	0,0	1,0	0,0	0,014	0,0	1,7	0,0
В	5,30		5,32		0,494		8,91	
SiO2	1,0		1,0		0,00		1,8	
CO2	0,82		0,79		0,17		0,00	
TDS	40042,2		38662,8		48,12		70120,8	
рH	8,1		8,1		7,6		8,6	

	Agua cruda	Agua Alim.	Conc.
CaSO4 / Ksp * 100:	23%	22%	47%
SrSO4 / Ksp * 100:	21%	20%	42%
BaSO4 / Ksp * 100:	25%	24%	49%
Sat. SiO2:	1%	1%	1%
Indice Sat. de Langelier	1,30	1,27	2,25
Indice Sat. de Stiff & Davis	0,33	0,31	1,23
Fuerza iónica	0,79	0,77	1,39
Presión osmótica	29,1 bar	28,1 bar	50,9 bar

Los cálculos de rendimiento del producto están basados en el rendimiento nominal del elemento de membrana, funcionando con agua de alimentación de una calidad aceptable. Los resultados mostrados en los listados creados por este programa son estimaciones del rendimiento del producto. Ninguna garantía ele producto o rendimiento del sistema es expresada o implícita, a menos que no sea proporcionada en una garantía separada firmada por un representante autorizado de Hydranautics. Los cálculos de la presión a elimentación aplicada son las mejores estimaciones para asistir al cliente en el dimensionamiento de la bomba de alta presión y no son una garantía de la presión actual de operación durante la vida del producto. Las presiones calculadas contienen un margen de seguridad para asegurar que las bombas de alimentación sean apropiadamente no son una garantia de la presion acuar de operación proporcionada. El margen de seguridad para asegurar que las bombas de alimentación sean apropiadamente dimensionadas basándose en la información proporcionada. El margen de seguridad incluye factores para un ratio normal de ensuciamiento de la membrana durante la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Como la cantidad de reactivos químicos necesarios para el ajuste de pH es dependiente del agua de alimentación. Como la cantidad de reactivos químicos necesarios para el ajuste de pH es dependiente del agua de alimentación y no es dependiente de la membrana, Hydranautics no garantiza el consumo de reactivos químicos. Si se requiere una garantía de sistema o producto, por favor póngase en contacto con representantes de Hydranautics. Las garantías no estándar o ampliadas, pueden resultar en precios diferentes a los precios cotizados anteriormente. (27/37)

2-2

6,9

DOS PASOS & CONTRAPRES. PERM.(VARIABLE)

Program Cálculo Proyecto Caudal I Presión Temp. A pH Agua Dosis Qu	creado ¡ o: oomba a Alim.: .gua Alir a Alim.:	oor: alta pres n.:	pro	oyecto 1381,9 55,7 8,1 0,0	503,6 11,0 24,0 9,0 1,1	m3/hr bar C(75F)	Cauda Cauda Recup Recup Edad o Dismir Fouling	Il mezcla: Il de Perme Il agua cru eración: . total siste de las Men nución flux g factor: nento paso	da: ema: nbranas: %/año:		1,79 45,0 7,0 1,00 10,0	90,0 42,9	
Flux pro	medio:			14,2	28,8	lm2hr	Tipo d	e Alimenta	ción:	Agua de	e mar - to	oma abiert	a
Etapa	Ca	erm. udal 3/hr	Cauda Alim. m3/hr	al/tubo Conc. m3/hr	Flux I/m2-		Beta	Conc.&C Presides Presides		Elemen Tipo	ito	Elem. Nº	Arreglo
1-1 2-1 2-2	62 32	1,9 7,4 5,9	8,2 13,3 10,4	4,5 4,6 3,0	14,2 30,1 25,9	<u>2</u>	1,01 1,21 1,26	54,5 8,8 7,1	0,0 1,5 0,0	SWC: ESPAB N ESPAB N	ΛΑX	1176 266 119	168x7 38x7 17x7
etapa	Elem Nº	Alim. pres Bar	Pres gota Bar	Perm flujo m3/hr	Perm Flux I/m2h	Beta	Perm sal SDT (ppm)	Conc. osm pres	CaSO4	Saturació SrSO4	n en Cor BaSO		Lang.
1-1 1-1 1-1 1-1 1-1 1-1	1 2 3 4 5 6 7	55,7 55,5 55,3 55,1 54,9 54,8 54,7	0,3 0,2 0,2 0,2 0,1 0,1 0,1	1,1 0,9 0,6 0,4 0,3 0,2 0,1	30,9 23,3 16,9 11,9 7,7 5,3 3,7	1,05 1,04 1,03 1,02 1,02 1,02 1,01	73,1 89,3 108,4 130,3 156,0 184,1 213,2	32,6 37,1 41,3 44,8 47,5 49,4 50,9	27 32 36 40 43 45	24 28 32 36 38 40 42	28 33 38 42 45 47 49	1 1 1 1 1 1	1,9 2,0 2,0 2,1 2,1 2,2 2,2
2-1 2-1 2-1 2-1 2-1 2-1 2-1	1 2 3 4 5 6 7	11,0 10,5 10,1 9,7 9,4 9,2 9,0	0,5 0,4 0,4 0,3 0,2 0,2 0,1	1,5 1,3 1,3 1,2 1,2 1,1	35,6 32,8 31,2 29,8 28,6 27,5 26,5	1,11 1,10 1,12 1,14 1,15 1,18 1,21	1,7 1,9 2,1 2,2 2,4 2,6 2,8	0,2 0,2 0,2 0,3 0,3 0,4 0,5	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	-2,3 -2,2 -2,1 -2,0 -1,9 -1,7 -1,6
2-2 2-2 2-2 2-2 2-2 2-2 2-2	1 2 3 4 5 6 7	8,6 8,3 8,0 7,7 7,5 7,4 7,3	0,4 0,3 0,2 0,2 0,1 0,1	1,2 1,2 1,1 1,1 1,0 1,0	30,2 28,6 27,2 25,9 24,7 23,3 21,6	1,12 1,10 1,15 1,17 1,19 1,23 1,27	2,9 3,1 3,2 3,5 3,8 4,3 4,9	0,5 0,6 0,7 0,9 1,0 1,3 1,7	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	-1,5 -1,4 -1,3 -1,1 -1,0 -0,8 -0,6
Etapa 1-1 2-1	NDP bar 15,9 8,6												

Los cálculos de rendimiento del producto están basados en el rendimiento nominal del elemento de membrana, funcionando con agua de alimentación de una calidad aceptable. Los resultados mostrados en los listados creados por este programa son estimaciones del rendimiento del producto. Ninguna garantía del producto o rendimiento del sistema es expresada o implícita, a menos que no sea proporcionada en una garantía separada firmada por un representante autorizado de Hydranautics. Los cálculos de la presión de alimentación aplicada son las mejores estimaciones para asistir al cliente en el dimensionamiento de la bomba de alta de alta presión y no son una garantía de la presión actual de operación durante la vida del producto. Las presiones calculadas contienen un margen de seguridad para asegurar que las bombas de alimentación sean apropiadamente dimensionadas basándose en la información proprocionada. El margen de seguridad incluye factores para un ratio normal de ensuciamiento de la membrana durante la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Como la cantidad de reactivos químicos son para el ajuste de pH es dependiente del agua de alimentación y no es dependiente de la membrana, Hydranautics no garantiza el consumo de reactivos químicos son se require una garantía de sistema o producto, por favor póngase en contacto con representantes de Hydranautics. Las garantías no estándar o ampliadas, pueden resultar en precios diferentes a los precios cotizados anteriormente.

Programa O.I. licenciado a:

Cálculo creado por:

Proyecto: Caudal de Permeado: 621,79 m3/hr proyecto Caudal bomba alta pres: 1381,9 m3/hr Caudal agua cruda: 1331,4 m3/hr Presión Alim.: Tasa recuperación perm: 45,0 % 55,7 bar Temp. Agua Alim.: 24,0 C(75F) 8,1 pH Agua Alim.: Edad de las Membranas: 0,0 años Dosis Químico,ppm (100%) 0,0 H2SO4 Disminución flux %/año: 7,0 % Fouling factor: 1,00 Incremento paso sales, 10,0

%/año:

Flux promedio: 14,2 Im2hr Tipo de Alimentación: Agua de mar - toma abierta

Etapa	Perm.	Cauda	al/tubo	Flux	Beta	Conc.&	Contra.	Elemento	Elem.	Arreglo
	Caudal	Alim.	Conc.			Presi	iones	Tipo	N°	
	m3/hr	m3/hr	m3/hr	l/m2-hr		bar	bar			
1-1	621,9	8,2	4,5	14,2	1,01	54,5	0,0	SWC5	1176	168x7

	Agua cruda 1		Agua Alim. 1		Perme	ado 1	Cond	c. 1
lón	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l
Ca	442,0	22,0	426,1	21,3	0,58	0,0	774,3	38,6
Mg	1499,0	123,4	1445,1	118,9	1,96	0,0	2625,9	216,1
Na	12020,0	522,6	11610,4	504,8	75,56	0,7	21048,0	915,1
K	671,0	17,2	648,5	16,6	5,27	0,0	1174,8	30,1
NH4	0,1	0,0	0,1	0,0	0,00	0,0	0,2	0,0
Ва	0,006	0,0	0,006	0,0	0,000	0,000	0,011	0,0
Sr	6,362	0,1	6,133	0,1	0,008	0,000	11,145	0,3
CO3	18,6	0,6	17,9	0,6	0,01	0,0	32,6	1,1
HCO3	163,3	2,7	158,3	2,6	1,65	0,0	286,5	4,7
SO4	3056,0	63,7	2946,2	61,4	4,27	0,0	5353,3	111,5
CI	22157,0	625,0	21395,3	603,5	123,83	0,8	38799,2	1094,5
F	1,5	0,1	1,5	0,1	0,02	0,0	2,6	0,1
NO3	1,0	0,0	1,0	0,0	0,04	0,0	1,7	0,0
В	5,30		5,32		0,93		8,91	
SiO2	1,0		1,0		0,00		1,8	
CO2	0,82		0,79		0,79		0,79	
TDS	40042,2		38662,8		214,1		70120,8	
pН	8,1		8,1		6,5		8,6	

	Agua cruda	Agua Alim.	Conc.
CaSO4 / Ksp * 100:	23%	22%	47%
SrSO4 / Ksp * 100:	21%	20%	42%
BaSO4 / Ksp * 100:	25%	24%	49%
Sat. SiO2:	1%	1%	1%
Indice Sat. de Langelier	1,30	1,27	2,25
Indice Sat. de Stiff & Davis	0,33	0,31	1,23
Fuerza iónica	0,79	0,77	1,39
Presión osmótica	29,1 bar	28,1 bar	50,9 bar

Los cálculos de rendimiento del producto están basados en el rendimiento nominal del elemento de membrana, funcionando con agua de alimentación de una calidad aceptable. Los resultados mostrados en los listados creados por este programa son estimaciones del rendimiento del producto. Ninguna garantía del producto o rendimiento del sistema es expresada o implicita, a menos que no sea proporcionada en una garantía del producto un representante autorizado de Hydranautics. Los cálculos de la presión de alimentación aplicada son las mejores estimaciones para a un el dimensionamiento de la bomba de alta de alta presión y no son una garantía de la presión actual de operación durante la vida del producto. Las presiones calculadas contienen un margen de seguridad para asegurar que las bombas de alimentación sean apropiadamente dimensionadas basándose en la información proporcionada. El margen de seguridad incluye factores para un ratio normal de ensuciamiento de la membrana durante la vida del producto. Los cálculos para el consumo de productos químicos son las vida del producto. Los cálculos para el consumo de productos químicos son proporcionados para la conveniencia y están basados en varias hipótesis acerca de la calidad y la composición del agua de alimentación. Como la cantidad de reactivos químicos necesarios para el ajuste de pH es dependiente del agua de alimentación y no es dependiente de la membrana, Hydranautics no garantiza el consumo de reactivos químico. Si se requiere una garantía de sistema o producto, por favor póngase en contacto con representantes de Hydranautics. Las garantías no estándar o ampliadas, pueden resultar en precios diferentes a los precios cotizados anteriormente. (27/37)

Programa O.I. licenciado a:

Cálculo creado por:

Proyecto: Caudal de Permeado: 453,29 m3/hr proyecto Presión Alim.: 11,0 bar Tasa recuperación perm: 90,0 % Temp. Agua Alim.: 24,0 C(75F) pH Agua Alim.: 9,0 Edad de las Membranas: 0,0 años NaOH Dosis Químico, ppm (100%) 1,1 Disminución flux %/año: 0,0 % Fouling factor: 1,00 Incremento paso sales, 0,0

%/año:

Flux promedio: 28,8 lm2hr Tipo de Alimentación: Agua de mar - toma abierta

Etapa	Perm.	Cauda	al/tubo	Flux	Beta	Conc.&	Contra.	Elemento	Elem.	Arreglo
	Caudal	Alim.	Conc.			Pres	iones	Tipo	Nο	
	m3/hr	m3/hr	m3/hr	l/m2-hr		bar	bar			
2-1	327,4	13,3	4,6	30,1	1,21	8,8	1,5	ESPAB MAX	266	38x7
2-2	125,9	10,4	3,0	25,9	1,27	7,1	0,0	ESPAB MAX	119	17x7

	Agua ci	ruda 2	Agua A	lim. 2	Perme	ado 2	Conc	. 2
lón	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l
Ca	0,6	0,0	0,6	0,0	0,003	0,0	5,8	0,3
Mg	2,0	0,2	2,0	0,2	0,009	0,0	19,5	1,6
Na	75,6	3,3	76,9	3,3	1,621	0,1	754,6	32,8
K	5,3	0,1	5,3	0,1	0,138	0,0	51,5	1,3
NH4	0,0	0,0	0,0	0,0	0,000	0,0	0,0	0,0
Ва	0,000	0,0	0,000	0,0	0,000	0,0	0,000	0,0
Sr	0,008	0,0	0,008	0,0	0,000	0,0	0,083	0,0
CO3	0,0	0,0	0,1	0,0	0,000	0,0	1,4	0,0
HCO3	1,6	0,0	2,6	0,0	0,096	0,0	25,0	0,4
SO4	4,3	0,1	4,3	0,1	0,022	0,0	42,5	0,9
CI	123,8	3,5	123,8	3,5	2,577	0,1	1215,1	34,3
F	0,0	0,0	0,0	0,0	0,001	0,0	0,2	0,0
NO3	0,0	0,0	0,0	0,0	0,006	0,0	0,4	0,0
В	0,93		0,93		0,38	·	5,84	
SiO2	0,0		0,0		0,000		0,0	
CO2	0,79		0,00		0,00		0,00	
TDS	214,1		216,5		4,85		2121,8	
На	6.5		9.0		7.7		10.0	

	Agua cruda	Agua Alim.	Conc.
CaSO4 / Ksp * 100:	0%	0%	0%
SrSO4 / Ksp * 100:	0%	0%	0%
BaSO4 / Ksp * 100:	0%	0%	0%
Sat. SiO2:	0%	0%	0%
Indice Sat. de Langelier	-5,07	-2,36	0,51
Indice Sat. de Stiff & Davis	-5,03	-2,31	0,49
Fuerza iónica	0,00	0,00	0,04
Presión osmótica	0,2 bar	0,2 bar	1,6 bar

Programa O.I. licenciado a:							
Cálculo creado por:				Caudal mezcla:		571,4	m3/hr
Proyecto:	proyecto			Caudal de Permeado:	621,79	453,29	m3/hr
Caudal bomba alta pres:	1381,9	503,6	m3/hr	Caudal agua cruda:		1331,4	m3/hr
Presión Alim.:	55,7	11,0	bar	Recuperación:	45,0	90,0	%
Temp. Agua Alim.:		24,0	C(75F)	Recup. total sistema:		42,9	%
pH Agua Alim.:	8,1	9,0		Edad de las Membranas:		0,0	años
Dosis Químico, ppm, ppm	0,0	1,1		Disminución flux %/año:	7,0	0,0	
				Fouling factor:	1,00	1,00	
				Incremento paso sales,	10,0	0,0	
				%/año:			
Flux promedio:	14,2	28,8	lm2hr	Tipo de Alimentación:	Agua de mar -	toma abier	ta

**** LOS SIGUIENTES PARÁMETROS EXCEDEN LOS LÍMITES DEL DISENO: ***

Indice Langelier de saturación muy alto en Conc. (2,25)

Directrices generales para diseñar un sistema sistema de ósmosis utilizando membranas Hydranautics. Por favor consulte a Hydranautics para recomendaciones específicas fuera de las recomendaciones señaladas

Límites caudal de la Alim. y del Conc.

Diámetro elemento Caudal máx. de la Alim. Caudal mínimo de Conc. 75 gpm (283.9 lpm) 12 gpm (45.4 lpm) 8.0 pulg 8.0 pulg(Full Fit) 75 gpm (283.9 lpm) 30 gpm (113.6 lpm)

Factor Beta no debe superar 1.2 para las membranas convencionales

Límites de saturación para sales poco solubles en Conc.

Sal soluble Saturación BaSO4 6000% CaSO4 230% 800% SrSO4 SiO2 100%

El Índ.de Sat.de Langelier para el Conc. no debe exceder1,8

Los lím. antes indicados aplican sólo si se utiliza un inhib.de incrust.efectivo. Sin inhibidor, la saturación en el Concentrado no debe superar 100%

14,4

Flux promedio:

Agua de mar - toma abierta

DOS PASOS & CONTRAPRES. PERM.(VARIABLE)

Programa O.I. licenciado a:							
Cálculo creado por:				Caudal mezcla:		571,4	m3/hr
Proyecto:	proyecto			Caudal de Permeado:	627,94	508,63	m3/hr
Caudal bomba alta pres:	1395,6	565,1	m3/hr	Caudal agua cruda:		1338,9	m3/hr
Presión Alim.:	58,5	12,4	bar	Recuperación:	45,0	90,0	%
Temp. Agua Alim.:		24,0	C(75F)	Recup. total sistema:		42,7	%
pH Agua Alim.:	8,1	9,2		Edad de las Membranas:		3,6	años
Dosis Químico, ppm, ppm	0,0	1,4		Disminución flux %/año:	7,0	0,0	
				Fouling factor:	0,80	1,00	
				Incremento paso sales,	10,0	0,0	
				%/año:			
					10,0	0,0	

32,3 lm2hr

Etapa	Perm.		al/tubo	Flux	Beta	Beta Conc.&Contra.		Elemento	Elem.	Arreglo
	Caudal	Alim.	Conc.			Pres	iones	Tipo	Nο	
	m3/hr	m3/hr	m3/hr	l/m2-hr		bar	bar	•		
1-1	628,0	8,3	4,6	14,4	1,01	57,3	0,0	SWC5	1176	168x7
2-1	371,8	14,9	5,1	34,2	1,21	9,8	1,5	ESPAB MAX	266	38x7
2-2	136.9	11 4	3.3	28 1	1 25	8.0	0.0	ESPAR MAX	119	17x7

Tipo de Alimentación:

	Agua d	ruda	Agua	Alim.	Perme	eado	Con	C.
lón	mg/l	meq/l	mg/l meq/l		mg/l	meq/l	mg/l	meq/l
Ca	442,0	22,0	424,4	21,2	0,087	0,0	771,0	38,5
Mg	1499,0	123,4	1439,4	118,5	0,293	0,0	2614,9	215,2
Na	12020,0	522,6	11574,9	503,3	12,809	0,6	20964,1	911,5
K	671,0	17,2	646,7	16,6	0,924	0,0	1170,1	30,0
NH4	0,1	0,0	0,1	0,0	0,000	0,0	0,2	0,0
Ва	0,006	0,0	0,006	0,0	0,000	0,0	0,010	0,0
Sr	6,362	0,1	6,109	0,1	0,001	0,0	11,098	0,3
CO3	18,6	0,6	17,9	0,6	0,002	0,0	32,6	1,1
HCO3	163,3	2,7	157,9	2,6	0,336	0,0	285,3	4,7
SO4	3056,0	63,7	2934,6	61,1	0,642	0,0	5331,0	111,1
CI	22157,0	625,0	21327,0	601,6	20,907	0,6	38643,1	1090,1
F	1,5	0,1	1,4	0,1	0,003	0,0	2,6	0,1
NO3	1,0	0,0	1,0	0,0	0,013	0,0	1,7	0,0
В	5,30		5,43		0,490		8,86	
SiO2	1,0		1,0		0,00		1,7	
CO2	0,82		0,79		0,09		0,00	
TDS	40042,2		38537,8		36,51		69838,4	
Hq	8.1		8.1		7.6		8.6	

	Agua cruda	Agua Alim.	Conc.
CaSO4 / Ksp * 100:	23%	22%	47%
SrSO4 / Ksp * 100:	21%	20%	42%
BaSO4 / Ksp * 100:	25%	23%	48%
Sat. SiO2:	1%	1%	1%
Indice Sat. de Langelier	1,30	1,27	2,25
Indice Sat. de Stiff & Davis	0,33	0,31	1,23
Fuerza iónica	0,79	0,76	1,38
Presión osmótica	29,1 bar	28,0 bar	50,7 bar

Cálculo cr Proyecto: Caudal bo Presión A Temp. Ag pH Agua	ua Alim.:	pro s:	oyecto 1395,6 58,5 8,1 0,0	565,1 12,4 24,0 9,2 1,4	m3/hr bar C(75F)	Cauda Cauda Recup Recup Edad o Dismir Fouling	Il mezcla: Il de Perme Il agua cru eración: . total siste de las Men nución flux g factor: nento paso	da: ema: nbranas: %/año:		7,94 45,0 7,0 0,80 10,0	571,4 508,63 1338,9 90,0 42,7 3,6 0,0 1,00 0,0	
Flux prom	nedio:		14,4	32,3	lm2hr		e Alimenta	ción:	Agua de	e mar - t	oma abiert	a
Etapa	Perm. Caudal m3/hr	Cauda Alim. m3/hr	al/tubo Conc. m3/hr	Flux I/m2-		Beta	Conc.&C Presic bar		Elemen Tipo	ito	Elem. Nº	Arreglo
1-1 2-1 2-2	628,0 371,8 136,9	8,3 14,9 11,4	4,6 5,1 3,3	14,4 34,2 28,7	4 1 2 1	I,01 I,21 I,25	57,3 9,8 8,0	0,0 1,5 0,0	SWC: ESPAB N ESPAB N	ЛΑХ	1176 266 119	168x7 38x7 17x7
	Elem Alim. Nº pres Bar	Pres gota Bar	Perm flujo m3/hr	Perm Flux I/m2h	Beta	Perm sal SDT (ppm)	Conc. osm pres	CaSO4	Saturació SrSO4	n en Coi BaSO		Lang.
1-1 1-1 1-1 1-1 1-1 1-1	1 58,5 2 58,3 3 58,0 4 57,8 5 57,7 6 57,5 7 57,4	0,3 0,2 0,2 0,2 0,1 0,1 0,1	1,0 0,8 0,6 0,5 0,3 0,3	27,4 22,0 17,0 12,9 9,3 6,9 5,0	1,05 1,04 1,03 1,02 1,02 1,02 1,02	109,8 129,7 153,1 179,8 210,6 244,7 280,5	31,9 35,9 39,7 43,3 46,2 48,7 50,7	26 30 34 38 42 44	23 27 31 34 37 40 42	27 32 36 40 43 46 48	1 1 1 1 1	1,9 1,9 2,0 2,1 2,1 2,2 2,2
2-1 2-1 2-1 2-1 2-1 2-1 2-1	1 12,4 2 11,8 3 11,3 4 10,9 5 10,5 6 10,2 7 10,0	0,6 0,5 0,4 0,3 0,3 0,2 0,2	1,7 1,5 1,5 1,4 1,3 1,3	40,9 37,4 35,5 33,8 32,4 31,1 29,9	1,11 1,10 1,13 1,14 1,16 1,18 1,22	2,0 2,2 2,3 2,5 2,7 2,9 3,2	0,2 0,3 0,3 0,4 0,4 0,5 0,6	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	-1,9 -1,8 -1,7 -1,6 -1,5 -1,3 -1,2
2-2 2-2 2-2 2-2 2-2 2-2 2-2	1 9,6 2 9,2 3 8,9 4 8,6 5 8,4 6 8,3 7 8,1	0,4 0,3 0,3 0,2 0,2 0,1 0,1	1,4 1,3 1,2 1,2 1,1 1,0 0,9	33,3 31,5 29,8 28,3 26,7 24,9 22,8	1,12 1,10 1,15 1,17 1,19 1,22 1,26	3,4 3,6 3,9 4,3 4,8 5,4 6,4	0,7 0,8 1,0 1,2 1,4 1,7 2,3	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	-1,1 -1,0 -0,8 -0,7 -0,6 -0,4 -0,2
Etapa 1-1 2-1	NDP bar 18,9 9,7											

9,7 7.5 2-1

Los cálculos de rendimiento del producto están basados en el rendimiento nominal del elemento de membrana, funcionando con agua de alimentación de una calidad aceptable. Los resultados mostrados en los listados creados por este programa son estimaciones del rendimiento del producto. Ninguna garantía del producto o rendimiento del sistema es expresada o implícita, a menos que no sea proporcionada en una garantía separada firmada por un representante autorizado de Hydranautics. Los cálculos de la presión de alimentación aplicada son las mejores estimaciones para asistir al cliente en el dimensionamiento de la bomba de alta de alta presión y no son una garantía de la presión actual de operación durante la vida del producto. Las presiones calculadas contienen un margen de seguridad para asegurar que las bombas de alimentación sean apropiadamente dimensionadas basándose en la información proprocionada. El margen de seguridad incluye factores para un ratio normal de ensuciamiento de la membrana durante la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Como la cantidad de reactivos químicos son para el ajuste de pH es dependiente del agua de alimentación y no es dependiente de la membrana, Hydranautics no garantiza el consumo de reactivos químicos son se require una garantía de sistema o producto, por favor póngase en contacto con representantes de Hydranautics. Las garantías no estándar o ampliadas, pueden resultar en precios diferentes a los precios cotizados anteriormente.

Programa O.I. licenciado a:

Cálculo creado por:

Proyecto: Caudal de Permeado: 627,94 m3/hr proyecto Caudal bomba alta pres: 1395,6 m3/hr Caudal agua cruda: 1338,9 m3/hr Presión Alim.: Tasa recuperación perm: 45,0 % 58,5 bar Temp. Agua Alim.: 24,0 C(75F) pH Agua Alim.: Edad de las Membranas: 3,6 años 8,1 Dosis Químico,ppm (100%) 0,0 H2SO4 Disminución flux %/año: 7,0 % Fouling factor: 0,80 Incremento paso sales, 10,0

%/año:

Flux promedio: 14,4 lm2hr Tipo de Alimentación: Agua de mar - toma abierta

Etapa	Perm.	Cauda	al/tubo	Flux	Beta	Conc.&	Contra.	Elemento	Elem.	Arreglo
•	Caudal	Alim.	Conc.			Presi	iones	Tipo	Nο	· ·
	m3/hr	m3/hr	m3/hr	l/m2-hr		bar	bar	•		
1-1	628.0	8.3	4.6	14.4	1.02	57.3	0.0	SWC5	1176	168x7

	Agua cr	uda 1	Agua A	lim. 1	Perme	ado 1	Conc	. 1
lón	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l
Ca	442,0	22,0	424,4	21,2	0,76	0,0	771,0	38,5
Mg	1499,0	123,4	1439,4	118,5	2,58	0,0	2614,9	215,2
Na	12020,0	522,6	11574,9	503,3	99,33	0,6	20964,1	911,5
K	671,0	17,2	646,7	16,6	6,93	0,0	1170,1	30,0
NH4	0,1	0,0	0,1	0,0	0,00	0,0	0,2	0,0
Ва	0,006	0,0	0,006	0,0	0,000	0,000	0,010	0,0
Sr	6,362	0,1	6,109	0,1	0,011	0,000	11,098	0,3
CO3	18,6	0,6	17,9	0,6	0,01	0,0	32,6	1,1
HCO3	163,3	2,7	157,9	2,6	2,17	0,0	285,3	4,7
SO4	3056,0	63,7	2934,6	61,1	5,61	0,0	5331,0	111,1
CI	22157,0	625,0	21327,0	601,6	162,78	0,6	38643,1	1090,1
F	1,5	0,1	1,4	0,1	0,02	0,0	2,6	0,1
NO3	1,0	0,0	1,0	0,0	0,06	0,0	1,7	0,0
В	5,30		5,43		1,24		8,86	
SiO2	1,0		1,0		0,01		1,7	
CO2	0,82		0,79		0,79		0,79	
TDS	40042,2		38537,8		281,5		69838,4	
pН	8,1		8,1		6,6		8,6	

CaSO4 / Ksp * 100: 23% 22% 47	' %
CaSO4 / Ksp * 100: 23% 22% 47	
SrSO4 / Ksp * 100: 21% 20% 42	%
BaSO4 / Ksp * 100: 25% 23% 48	%
Sat. SiO2: 1% 1% 1%	%
Indice Sat. de Langelier 1,30 1,27 2,3	25
Indice Sat. de Stiff & Davis 0,33 0,31 1,3	23
Fuerza iónica 0,79 0,76 1,	38
Presión osmótica 29,1 bar 28,0 bar 50,7	bar

Los cálculos de rendimiento del producto están basados en el rendimiento nominal del elemento de membrana, funcionando con agua de alimentación de una calidad aceptable. Los resultados mostrados en los listados creados por este programa son estimaciones del rendimiento del producto. Ninguna garantía del producto o rendimiento del sistema es expresada o implicita, a menos que no sea proporcionada en una garantía del producto un representante autorizado de Hydranautics. Los cálculos de la presión de alimentación aplicada son las mejores estimaciones para a un el dimensionamiento de la bomba de alta de alta presión y no son una garantía de la presión actual de operación durante la vida del producto. Las presiones calculadas contienen un margen de seguridad para asegurar que las bombas de alimentación sean apropiadamente dimensionadas basándose en la información proporcionada. El margen de seguridad incluye factores para un ratio normal de ensuciamiento de la membrana durante la vida del producto. Los cálculos para el consumo de productos químicos son las vida del producto. Los cálculos para el consumo de productos químicos son proporcionados para la conveniencia y están basados en varias hipótesis acerca de la calidad y la composición del agua de alimentación. Como la cantidad de reactivos químicos necesarios para el ajuste de pH es dependiente del agua de alimentación y no es dependiente de la membrana, Hydranautics no garantiza el consumo de reactivos químico. Si se requiere una garantía de sistema o producto, por favor póngase en contacto con representantes de Hydranautics. Las garantías no estándar o ampliadas, pueden resultar en precios diferentes a los precios cotizados anteriormente. (27/37)

Programa O.I. licenciado a:

Cálculo creado por:

Proyecto: Caudal de Permeado: 508,63 m3/hr proyecto Presión Alim.: 12,4 bar Tasa recuperación perm: 90,0 % Temp. Agua Alim.: 24,0 C(75F) pH Agua Alim.: 9,2 Edad de las Membranas: 3,6 años NaOH Dosis Químico, ppm (100%) 1,4 Disminución flux %/año: 0,0 % Fouling factor: 1,00 Incremento paso sales, 0,0

%/año:

Flux promedio: 32,3 lm2hr Tipo de Alimentación: Agua de mar - toma abierta

Etapa	Perm.	Cauda	al/tubo	Flux Beta Conc.&Contr		Contra.	Elemento	Elem.	Arreglo	
	Caudal	Alim.	Conc.			Presiones		Tipo	Nο	
	m3/hr	m3/hr	m3/hr	l/m2-hr		bar	bar			
2-1	371,8	14,9	5,1	34,2	1,22	9,8	1,5	ESPAB MAX	266	38x7
2-2	136,9	11,4	3,3	28,1	1,26	8,0	0,0	ESPAB MAX	119	17x7

	Agua ci	ruda 2	Agua A	lim. 2	Perme	ado 2	Conc	. 2
lón	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l
Ca	0,8	0,0	0,8	0,0	0,003	0,0	7,6	0,4
Mg	2,6	0,2	2,6	0,2	0,011	0,0	25,7	2,1
Na	99,3	4,3	101,0	4,4	2,127	0,1	991,2	43,1
K	6,9	0,2	6,9	0,2	0,182	0,0	67,7	1,7
NH4	0,0	0,0	0,0	0,0	0,000	0,0	0,0	0,0
Ва	0,000	0,0	0,000	0,0	0,000	0,0	0,000	0,0
Sr	0,011	0,0	0,011	0,0	0,000	0,0	0,109	0,0
CO3	0,0	0,0	0,3	0,0	0,001	0,0	2,7	0,1
HCO3	2,2	0,0	3,0	0,0	0,111	0,0	28,8	0,5
SO4	5,6	0,1	5,6	0,1	0,029	0,0	55,8	1,2
CI	162,8	4,6	162,8	4,6	3,391	0,1	1597,3	45,1
F	0,0	0,0	0,0	0,0	0,001	0,0	0,2	0,0
NO3	0,1	0,0	0,1	0,0	0,008	0,0	0,5	0,0
В	1,24		1,24		0,40		8,82	
SiO2	0,0		0,0		0,000		0,1	
CO2	0,79		0,00		0,00		0,00	
TDS	281,5		284,3		6,26		2786,4	
pН	6,6		9,2		7,9		10,2	

	Agua cruda	Agua Alim.	Conc.
CaSO4 / Ksp * 100:	0%	0%	0%
SrSO4 / Ksp * 100:	0%	0%	0%
BaSO4 / Ksp * 100:	0%	0%	0%
Sat. SiO2:	0%	0%	0%
Indice Sat. de Langelier	-4,73	-1,96	0,91
Indice Sat. de Stiff & Davis	-4,68	-1,91	0,85
Fuerza iónica	0,00	0,00	0,05
Presión osmótica	0,2 bar	0,2 bar	2,1 bar

Flux promedio:	14.4	32.3	lm2hr	%/año: Tipo de Alimentación:	Agua de mar - 1		
				Incremento paso sales,	10,0	0,0	
				Fouling factor:	0,80	1,00	
Dosis Químico, ppm, ppm	0,0	1,4		Disminución flux %/año:	7,0	0,0	
pH Agua Alim.:	8,1	9,2		Edad de las Membranas:		3,6	años
Temp. Agua Alim.:		24,0	C(75F)	Recup. total sistema:		42,7	%
Presión Alim.:	58,5	12,4	bar	Recuperación:	45,0	90,0	%
Caudal bomba alta pres:	1395,6	565,1	m3/hr	Caudal agua cruda:		1338,9	m3/hr
Proyecto:	proyecto			Caudal de Permeado:	627,94	508,63	m3/hr
Cálculo creado por:				Caudal mezcla:		571,4	m3/hr
Programa O.I. licenciado a:							

**** LOS SIGUIENTES PARÁMETROS EXCEDEN LOS LÍMITES DEL DISENO: ***

Indice Langelier de saturación muy alto en Conc. (2,25)

Directrices generales para diseñar un sistema sistema de ósmosis utilizando membranas Hydranautics. Por favor consulte a Hydranautics para recomendaciones específicas fuera de las recomendaciones señaladas

Límites caudal de la Alim. y del Conc.

Diámetro elemento Caudal máx. de la Alim. Caudal mínimo de Conc. 75 gpm (283.9 lpm) 12 gpm (45.4 lpm) 8.0 pulg 8.0 pulg(Full Fit) 75 gpm (283.9 lpm) 30 gpm (113.6 lpm)

Factor Beta no debe superar 1.2 para las membranas convencionales

Límites de saturación para sales poco solubles en Conc.

Sal soluble Saturación BaSO4 6000% CaSO4 230% SrSO4 800% SiO2 100%

El Índ.de Sat.de Langelier para el Conc. no debe exceder1,8

Los lím. antes indicados aplican sólo si se utiliza un inhib.de incrust.efectivo. Sin inhibidor, la saturación en el Concentrado no debe superar 100%

Programa O.I. licenciado a:							
Cálculo creado por:				Caudal mezcla:		571,4	m3/hr
Proyecto:	proyecto			Caudal de Permeado:	624,51	477,75	m3/hr
Caudal bomba alta pres:	1387,9	530,8	m3/hr	Caudal agua cruda:		1334,7	m3/hr
Presión Alim.:	55,5	10,7	bar	Recuperación:	45,0	90,0	%
Temp. Agua Alim.:		28,0	C(82F)	Recup. total sistema:		42,8	%
pH Agua Alim.:	8,1	9,4		Edad de las Membranas:		0,0	años
Dosis Químico, ppm, ppm	0,0	2,1		Disminución flux %/año:	7,0	0,0	
				Fouling factor:	1,00	1,00	
				Incremento paso sales,	10,0	0,0	
				%/año:			

Flux promedio:	14,3	30,4 lm2hr	Tipo de Alimentación:	Agua de mar - toma abierta
----------------	------	------------	-----------------------	----------------------------

Etapa	Perm.		al/tubo	Flux	Beta		Conc.&Contra. Elemento Presiones Tipo		Elem.	Arreglo
	Caudal	Alim.	Conc.			Presi	ones	Tipo	Nο	
	m3/hr	m3/hr	m3/hr	l/m2-hr		bar	bar			
1-1	624,6	8,3	4,5	14,3	1,01	54,3	0,0	SWC5	1176	168x7
2-1	349,0	14,0	4,8	32,1	1,21	8,4	1,5	ESPAB MAX	266	38x7
2-2	128,8	10,7	3,1	26,5	1,25	6.7	0.0	ESPAB MAX	119	17x7

	Agua c	ruda	Agua A	Alim.	Perme	ado	Cond	D.
lón	mg/l	meq/l	mg/l meq/l		mg/l meq/l		mg/l	meq/l
Ca	442,0	22,0	425,4	21,2	0,112	0,0	772,8	38,5
Mg	1499,0	123,4	1442,6	118,7	0,378	0,0	2621,0	215,7
Na	12020,0	522,6	11594,7	504,1	16,139	0,7	21010,5	913,5
K	671,0	17,2	647,7	16,6	1,155	0,0	1172,6	30,1
NH4	0,1	0,0	0,1	0,0	0,000	0,0	0,2	0,0
Ва	0,006	0,0	0,006	0,0	0,000	0,0	0,010	0,0
Sr	6,362	0,1	6,122	0,1	0,002	0,0	11,124	0,3
CO3	21,5	0,7	20,8	0,7	0,003	0,0	37,9	1,3
HCO3	163,3	2,7	158,0	2,6	0,407	0,0	285,7	4,7
SO4	3056,0	63,7	2941,0	61,3	0,828	0,0	5343,4	111,3
CI	22157,0	625,0	21364,4	602,7	26,360	0,7	38728,5	1092,5
F	1,5	0,1	1,4	0,1	0,004	0,0	2,6	0,1
NO3	1,0	0,0	1,0	0,0	0,015	0,0	1,7	0,0
В	5,30		5,38		0,481		8,89	
SiO2	1,0		1,0		0,00		1,7	
CO2	0,76		0,73		0,12		0,00	
TDS	40045,1		38609,5		45,88		69998,7	
рH	8,1		8,1		7,7		8,6	

	Agua cruda	Agua Alim.	Conc.
CaSO4 / Ksp * 100:	23%	22%	46%
SrSO4 / Ksp * 100:	20%	19%	41%
BaSO4 / Ksp * 100:	22%	21%	44%
Sat. SiO2:	1%	1%	1%
Indice Sat. de Langelier	1,40	1,37	2,36
Indice Sat. de Stiff & Davis	0,40	0,38	1,32
Fuerza iónica	0,79	0,77	1,39
Presión osmótica	29,5 bar	28,4 bar	51,5 bar

Los cálculos de rendimiento del producto están basados en el rendimiento nominal del elemento de membrana, funcionando con agua de alimentación de una calidad aceptable. Los resultados mostrados en los listados creados por este programa son estimaciones del rendimiento del producto. Ninguna garantía del producto o rendimiento del sistema es expresada o implícita, a menos que no sea proporcionada en una garantía separada firmada por un representante autorizado de Hydranautics. Los cálculos de la presión de alimentación aplicada son las mejores estimaciones para asistir al cliente en el dimensionamiento de la bomba de alta de alta presión y no son una garantía de la presión actual de operación durante la vida del producto. Las presiones calculadas contienen un margen de seguridad para asegurar que las bombas de alimentación sean apropiadamente dimensionadas basándose en la información proprocionada. El margen de seguridad incluye factores para un ratio normal de ensuciamiento de la membrana durante la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Como la cantidad de reactivos químicos son para el ajuste de pH es dependiente del agua de alimentación y no es dependiente de la membrana, Hydranautics no garantiza el consumo de reactivos químicos son se require una garantía de sistema o producto, por favor póngase en contacto con representantes de Hydranautics. Las garantías no estándar o ampliadas, pueden resultar en precios diferentes a los precios cotizados anteriormente.

DOS PASOS & CONTRAPRES. PERM.(VARIABLE)

Programa O.I. licenciado Cálculo creado por: Proyecto: Caudal bomba alta pres: Presión Alim.: Temp. Agua Alim.: pH Agua Alim.: Dosis Químico, ppm, pp		proyecto : 1387,9 5 55,5		530,8 10,7 28,0 9,4 2,1	10,7 bar Recuperación: 28,0 C(82F) Recup. total sistema: 9,4 Edad de las Membranas:				4,51 45,0 7,0 1,00 10,0	571,4 477,75 1334,7 90,0 42,8 0,0 0,0 1,00 0,0	m3/hr m3/hr m3/hr % % años		
Flux pro	medio:			14,3	30,4	lm2hr		e Alimenta	ción:	Agua de	e mar - t	oma abiert	a
Etapa	Ca	erm. ludal 3/hr	Cauda Alim. m3/hr	al/tubo Conc. m3/hr	Flu:		Beta	Conc.&C Presio		Elemen Tipo	to	Elem. Nº	Arreglo
1-1 2-1 2-2	62 34	24,6 19,0 28,8	8,3 14,0 10,7	4,5 4,8 3,1	14,3 32,	3 1 1 1	1,01 1,21 1,25	54,3 8,4 6,7	0,0 1,5 0,0	SWC5 ESPAB N ESPAB N	ИAX	1176 266 119	168x7 38x7 17x7
etapa	Elem Nº	Alim. pres Bar	Pres gota Bar	Perm flujo m3/hr	Perm Flux I/m2h	Beta	Perm sal SDT (ppm)	Conc. osm pres	CaSO4	Saturació SrSO4	n en Coi BaSO		Lang.
1-1 1-1 1-1 1-1 1-1 1-1	1 2 3 4 5 6 7	55,5 55,2 55,0 54,8 54,7 54,6 54,4	0,3 0,2 0,2 0,2 0,1 0,1	1,2 0,9 0,6 0,4 0,3 0,2 0,1	33,1 24,1 16,8 10,8 7,2 4,8 3,2	1,06 1,04 1,03 1,03 1,02 1,02 1,01	78,3 97,5 120,1 147,7 177,6 210,5 244,3	33,4 38,2 42,5 45,8 48,3 50,1 51,4	27 31 36 40 42 44 46	24 28 32 35 38 40 41	26 31 35 38 41 43	1 1 1 1 1 1	2,0 2,1 2,2 2,2 2,3 2,3 2,3
2-1 2-1 2-1 2-1 2-1 2-1 2-1	1 2 3 4 5 6 7	10,7 10,2 9,7 9,3 9,0 8,7 8,5	0,5 0,5 0,4 0,3 0,3 0,2 0,2	1,6 1,4 1,4 1,3 1,2 1,2	38,8 35,4 33,4 31,7 30,2 28,9 27,8	1,11 1,10 1,13 1,14 1,16 1,18 1,21	2,2 2,5 2,7 2,9 3,1 3,4 3,6	0,2 0,2 0,3 0,3 0,4 0,5 0,6	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	-1,7 -1,6 -1,5 -1,4 -1,3 -1,1 -0,9
2-2 2-2 2-2 2-2 2-2 2-2 2-2	1 2 3 4 5 6 7	8,2 7,8 7,5 7,3 7,1 6,9 6,8	0,4 0,3 0,2 0,2 0,2 0,1 0,1	1,3 1,2 1,2 1,1 1,0 0,9 0,9	31,7 29,9 28,2 26,6 25,0 23,2 21,1	1,12 1,10 1,15 1,17 1,19 1,22 1,26	3,8 4,1 4,4 4,8 5,3 6,0 7,0	0,6 0,7 0,9 1,0 1,2 1,5 2,0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	-0,9 -0,7 -0,6 -0,5 -0,4 -0,2 0,0
Etapa 1-1 2-1 2-2	NDP bar 15,2 8,2 6,3												

Los cálculos de rendimiento del producto están basados en el rendimiento nominal del elemento de membrana, funcionando con agua de alimentación de una calidad aceptable. Los resultados mostrados en los listados creados por este programa son estimaciones del rendimiento del producto. Ninguna garantía del producto o rendimiento del sistema es expresada o implícita, a menos que no sea proporcionada en una garantía separada firmada por un representante autorizado de Hydranautics. Los cálculos de la presión de alimentación aplicada son las mejores estimaciones para asistir al cliente en el dimensionamiento de la bomba de alta de alta presión y no son una garantía de la presión actual de operación durante la vida del producto. Las presiones calculadas contienen un margen de seguridad para asegurar que las bombas de alimentación sean apropiadamente dimensionadas basándose en la información proporcionada. El margen de seguridad incluye factores para un ratio normal de ensuciamiento de la membrana durante la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Cos cálculos para el consumo de productos químicos son la vida del producto. Como la cantidad de reactivos químicos son para el ajuste de pH es dependiente del agua de alimentación y no es dependiente de la membrana, Hydranautics no garantiza el consumo de reactivos químicos so se requiere una garantía de sistema o producto, por favor póngase en contacto con representantes de Hydranautics. Las garantías no estándar o ampliadas, pueden resultar en precios diferentes a los precios cotizados anteriormente.

Programa O.I. licenciado a:

Cálculo creado por:

Flux promedio:

Proyecto: Caudal de Permeado: 624,51 m3/hr proyecto Caudal bomba alta pres: 1387,9 m3/hr Caudal agua cruda: 1334,7 m3/hr Presión Alim.: Tasa recuperación perm: 45,0 % 55,5 bar Temp. Agua Alim.: 28,0 C(82F) pH Agua Alim.: 8,1 Edad de las Membranas: 0.0 años Dosis Químico,ppm (100%) H2SO4 Disminución flux %/año: 7,0 % 0,0 1,00 Fouling factor: Incremento paso sales, 10,0

14,3 lm2hr

%/año: Tipo de Alimentación: Agua de mar - toma abierta

Etapa Perm. Caudal/tubo Flux Beta Conc.&Contra. Elemento Elem. Arreglo Caudal Alim. Nο Conc. Presiones Tipo m3/hr m3/hr m3/hr I/m2-hr bar bar SWC5 1-1 624,6 8,3 4,5 14,3 1,01 54,3 1176 168x7 0,0

	Agua cru	uda 1	Agua Al	im. 1	Permea	ado 1	Cond	. 1
lón	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l
Ca	442,0	22,0	425,4	21,2	0,66	0,0	772,8	38,5
Mg	1499,0	123,4	1442,6	118,7	2,24	0,0	2621,0	215,7
Na	12020,0	522,6	11594,7	504,1	86,44	0,7	21010,5	913,5
K	671,0	17,2	647,7	16,6	6,03	0,0	1172,6	30,1
NH4	0,1	0,0	0,1	0,0	0,00	0,0	0,2	0,0
Ва	0,006	0,0	0,006	0,0	0,000	0,000	0,010	0,0
Sr	6,362	0,1	6,122	0,1	0,010	0,000	11,124	0,3
CO3	21,5	0,7	20,8	0,7	0,01	0,0	37,9	1,3
HCO3	163,3	2,7	158,0	2,6	1,88	0,0	285,7	4,7
SO4	3056,0	63,7	2941,0	61,3	4,88	0,0	5343,4	111,3
CI	22157,0	625,0	21364,4	602,7	141,66	0,7	38728,5	1092,5
F	1,5	0,1	1,4	0,1	0,02	0,0	2,6	0,1
NO3	1,0	0,0	1,0	0,0	0,05	0,0	1,7	0,0
В	5,30		5,38	·	1,08		8,89	
SiO2	1,0		1,0		0,00		1,7	
CO2	0,76		0,73		0,73		0,73	
TDS	40045,1		38609,5		245,0		69998,7	
nН	8 1		8.1		6.6		8.6	

ır

Los cálculos de rendimiento del producto están basados en el rendimiento nominal del elemento de membrana, funcionando con agua de alimentación de una calidad aceptable. Los resultados mostrados en los listados creados por este programa son estimaciones del rendimiento del producto. Ninguna garantia del producto o rendimiento del sistema es expresada o implicita, a menos que no sea proporcionada en una garantia separada firmada por un representante autorizado de Hydranautics. Los cálculos de la presión de alimentación aplicada son las mejores estimaciones para asistir al cliente en el dimensionamiento del la bomba de alta presión y no son una garantía de la presión actual de operación durante la vida del producto. Las presiones calculadas contienen un margen de seguridad para asegurar que las bombas de alimentación sean apropiadamente dimensionadas basándose en la información proporcionada. El margen de segunidad incluye factores para un ratio normal de ensuciamiento de la membrana durante la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Los cálculos para el consumo de productos químicos son proporcionados para la conveniencia y están basados en varias hipótesis acerca de la calidad y la composición del agua de alimentación. Como la cantidad de reactivos químicos para el ajuste de pH es dependiente del agua de alimentación y no es dependiente de la membrana, Hydranautics no garantiza el consumo de reactivos químico. Si se requiere una garantía de sistema o producto, por favor póngase en contacto con representantes de Hydranautics. Las garantías no estándar o ampliadas, pueden resultar en precios diferentes a los precios cotizados anteriormente. (27/37)

Programa O.I. licenciado a:

Cálculo creado por:

Proyecto: Caudal de Permeado: 477,75 m3/hr proyecto Presión Alim.: 10,7 bar Tasa recuperación perm: 90,0 % Temp. Agua Alim.: 28,0 C(82F) pH Agua Alim.: 9,4 Edad de las Membranas: 0,0 años NaOH Dosis Químico, ppm (100%) 2,1 Disminución flux %/año: 0,0 % Fouling factor: 1,00 Incremento paso sales, 0,0

%/año:

Flux promedio: 30,4 lm2hr Tipo de Alimentación: Agua de mar - toma abierta

Etapa	Perm.	Cauda	al/tubo	Flux	Beta	Conc.&	Contra.	Elemento	Elem.	Arreglo
	Caudal	Alim.	Conc.			Pres	iones	Tipo	Nο	
	m3/hr	m3/hr	m3/hr	l/m2-hr		bar	bar			
2-1	349,0	14,0	4,8	32,1	1,21	8,4	1,5	ESPAB MAX	266	38x7
2-2	128,8	10,7	3,1	26,5	1,26	6,7	0,0	ESPAB MAX	119	17x7

	Agua cı	ruda 2	Agua A	lim. 2	Perme	ado 2	Conc	. 2
lón	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l
Ca	0,7	0,0	0,7	0,0	0,004	0,0	6,6	0,3
Mg	2,2	0,2	2,2	0,2	0,013	0,0	22,3	1,8
Na	86,4	3,8	88,9	3,9	2,355	0,1	868,0	37,7
K	6,0	0,2	6,0	0,2	0,199	0,0	58,5	1,5
NH4	0,0	0,0	0,0	0,0	0,000	0,0	0,0	0,0
Ba	0,000	0,0	0,000	0,0	0,000	0,0	0,000	0,0
Sr	0,010	0,0	0,010	0,0	0,000	0,0	0,095	0,0
CO3	0,0	0,0	0,4	0,0	0,001	0,0	3,8	0,1
HCO3	1,9	0,0	2,5	0,0	0,117	0,0	23,8	0,4
SO4	4,9	0,1	4,9	0,1	0,033	0,0	48,5	1,0
CI	141,7	4,0	141,7	4,0	3,753	0,1	1382,8	39,0
F	0,0	0,0	0,0	0,0	0,001	0,0	0,2	0,0
NO3	0,0	0,0	0,0	0,0	0,009	0,0	0,4	0,0
В	1,08		1,08		0,36		7,55	
SiO2	0,0		0,0		0,000		0,0	
CO2	0,73		0,00		0,00		0,00	
TDS	245,0		248,4		6,85		2422,6	
Ha	6.6		9.4		8.2		10.4	

	Agua cruda	Agua Alim.	Conc.
CaSO4 / Ksp * 100:	0%	0%	0%
SrSO4 / Ksp * 100:	0%	0%	0%
BaSO4 / Ksp * 100:	0%	0%	0%
Sat. SiO2:	0%	0%	0%
Indice Sat. de Langelier	-4,81	-1,76	1,11
Indice Sat. de Stiff & Davis	-4,73	-1,68	1,09
Fuerza iónica	0,00	0,00	0,04
Presión osmótica	0,2 bar	0,2 bar	1,9 bar

Programa O.I. licenciado a:							
Cálculo creado por:				Caudal mezcla:		571,4	m3/hr
Proyecto:	proyecto			Caudal de Permeado:	624,51	477,75	m3/hr
Caudal bomba alta pres:	1387,9	530,8	m3/hr	Caudal agua cruda:		1334,7	m3/hr
Presión Alim.:	55,5	10,7	bar	Recuperación:	45,0	90,0	%
Temp. Agua Alim.:		28,0	C(82F)	Recup. total sistema:		42,8	%
pH Agua Alim.:	8,1	9,4		Edad de las Membranas:		0,0	años
Dosis Químico, ppm, ppm	0,0	2,1		Disminución flux %/año:	7,0	0,0	
				Fouling factor:	1,00	1,00	
				Incremento paso sales,	10,0	0,0	
				%/año:			
Flux promedio:	14,3	30,4	lm2hr	Tipo de Alimentación:	Agua de mar - t	oma abiert	ta

**** LOS SIGUIENTES PARÁMETROS EXCEDEN LOS LÍMITES DEL DISENO: ***

Indice Langelier de saturación muy alto en Conc. (2,36)

Directrices generales para diseñar un sistema sistema de ósmosis utilizando membranas Hydranautics. Por favor consulte a Hydranautics para recomendaciones específicas fuera de las recomendaciones señaladas

Límites caudal de la Alim. y del Conc.

Diámetro elemento
8.0 pulg
75 gpm (283.9 lpm)
8.0 pulg(Full Fit)
75 gpm (283.9 lpm)
30 gpm (113.6 lpm)

Factor Beta no debe superar 1.2 para las membranas convencionales

Límites de saturación para sales poco solubles en Conc.

 Sal soluble
 Saturación

 BaSO4
 6000%

 CaSO4
 230%

 SrSO4
 800%

 SiO2
 100%

El Índ.de Sat.de Langelier para el Conc. no debe exceder1,8

Los lím. antes indicados aplican sólo si se utiliza un inhib.de incrust.efectivo. Sin inhibidor, la saturación en el Concentrado no debe superar 100%

Programa O.I. licenciado a: Cálculo creado por: Caudal mezcla: 571,4 m3/hr Proyecto: Caudal de Permeado: 629,33 521,08 m3/hr proyecto Caudal bomba alta pres: 1398,7 578,9 m3/hr Caudal agua cruda: 1340,6 m3/hr 90,0 Presión Alim.: 57,8 11,8 bar Recuperación: 45,0 % Temp. Agua Alim.: 28,0 C(82F) Recup. total sistema: 42,6 % pH Agua Alim.: 8,1 9,5 Edad de las Membranas: 3,6 años Dosis Químico, ppm, ppm 2,5 Disminución flux %/año: 7,0 0,0 0,0 Fouling factor: 0,80 1,00 Incremento paso sales, 10,0 0,0 %/año:

Flux promedio: 14,4 33,1 lm2hr Tipo de Alimentación: Agua de mar - toma abierta

Etapa	Perm.	Cauda	al/tubo	Flux	Beta	Conc.&	Contra.	Elemento	Elem.	Arreglo
	Caudal	Alim.	Conc.			Presi	iones	Tipo	Nο	
	m3/hr	m3/hr	m3/hr	l/m2-hr		bar	bar			
1-1	629,4	8,3	4,6	14,4	1,01	56,6	0,0	SWC5	1176	168x7
2-1	385,4	15,2	5,1	35,4	1,22	9,2	1,5	ESPAB MAX	266	38x7
2-2	135,8	11,4	3,4	27,9	1,23	7,3	0.0	ESPAB MAX	119	17x7

	Agua c	ruda	Agua A	Alim.	Perme	eado	Cond	D.
lón	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l
Ca	442,0	22,0	424,1	21,2	0,081	0,0	770,3	38,4
Mg	1499,0	123,4	1438,2	118,4	0,276	0,0	2612,5	215,0
Na	12020,0	522,6	11571,4	503,1	12,926	0,6	20945,9	910,7
K	671,0	17,2	646,5	16,6	0,945	0,0	1169,0	30,0
NH4	0,1	0,0	0,1	0,0	0,000	0,0	0,2	0,0
Ва	0,006	0,0	0,006	0,0	0,000	0,0	0,010	0,0
Sr	6,362	0,1	6,104	0,1	0,001	0,0	11,088	0,3
CO3	21,5	0,7	20,9	0,7	0,003	0,0	37,9	1,3
HCO3	163,3	2,7	157,7	2,6	0,346	0,0	284,7	4,7
SO4	3056,0	63,7	2932,2	61,1	0,606	0,0	5326,1	111,0
CI	22157,0	625,0	21318,1	601,4	21,063	0,6	38607,6	1089,1
F	1,5	0,1	1,4	0,1	0,003	0,0	2,6	0,1
NO3	1,0	0,0	1,0	0,0	0,016	0,0	1,7	0,0
В	5,30		5,51		0,485		8,84	
SiO2	1,0		1,0		0,00		1,7	
CO2	0,76		0,73		0,07		0,00	
TDS	40045,1		38524,3		36,75		69780,3	
На	8.1		8.1		7.7		8.6	

	Agua cruda	Agua Alim.	Conc.
CaSO4 / Ksp * 100:	23%	22%	46%
SrSO4 / Ksp * 100:	20%	19%	41%
BaSO4 / Ksp * 100:	22%	21%	44%
Sat. SiO2:	1%	1%	1%
Indice Sat. de Langelier	1,40	1,37	2,36
Indice Sat. de Stiff & Davis	0,40	0,38	1,32
Fuerza iónica	0,79	0,76	1,38
Presión osmótica	29,5 bar	28,3 bar	51,3 bar

Los cálculos de rendimiento del producto están basados en el rendimiento nominal del elemento de membrana, funcionando con agua de alimentación de una calidad aceptable. Los resultados mostrados en los listados creados por este programa son estimaciones del rendimiento del producto. Ninguna garantía ele producto o rendimiento del sistema es expresada o implícita, a menos que no sea proporcionada en una garantía separada firmada por un representante autorizado de Hydranautics. Los cálculos de la presión a elimentación aplicada son las mejores estimaciones para asistir al cliente en el dimensionamiento de la bomba de alta presión y no son una garantía de la presión actual de operación durante la vida del producto. Las presiones calculadas contienen un margen de seguridad para asegurar que las bombas de alimentación sean apropiadamente no son una garantia de la presion acuar de operación proporcionada. El margen de seguridad para asegurar que las bombas de alimentación sean apropiadamente dimensionadas basándose en la información proporcionada. El margen de seguridad incluye factores para un ratio normal de ensuciamiento de la membrana durante la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Como la cantidad de reactivos químicos necesarios para el ajuste de pH es dependiente del agua de alimentación. Como la cantidad de reactivos químicos necesarios para el ajuste de pH es dependiente del agua de alimentación y no es dependiente de la membrana, Hydranautics no garantiza el consumo de reactivos químicos. Si se requiere una garantía de sistema o producto, por favor póngase en contacto con representantes de Hydranautics. Las garantías no estándar o ampliadas, pueden resultar en precios diferentes a los precios cotizados anteriormente. (27/37)

DOS PASOS & CONTRAPRES. PERM.(VARIABLE)

Program Cálculo Proyecto Caudal I Presión Temp. A pH Agua Dosis Qu	creado o: bomba a Alim.: agua Alir a Alim.:	por: alta pres m.:	pro	57,8 8,1 0,0	578,9 11,8 28,0 9,5 2,5	m3/hr bar C(82F)	Cauda Cauda Recup Recup Edad o Dismir Fouling	I mezcla: I de Perme I agua crui eración: . total siste de las Men nución flux g factor: .	da: ema: nbranas: %/año:	,	9,33 45,0 7,0 0,80 10,0	,	m3/hr m3/hr m3/hr % % años
Flux pro	medio:			14,4	33,1	lm2hr		e Alimenta	ción:	Agua de	e mar - t	oma abiert	a
Etapa	Ca	erm. udal 3/hr	Cauda Alim. m3/hr	al/tubo Conc. m3/hr	Flu:		Beta	Conc.&C Presio		Elemen Tipo	to	Elem. Nº	Arreglo
1-1 2-1 2-2	62 38	29,4 35,4 35,8	8,3 15,2 11,4	4,6 5,1 3,4	14,4 35,4 27,9	4 1 4 1	1,01 1,22 1,23	56,6 9,2 7,3	0,0 1,5 0,0	SWC5 ESPAB N ESPAB N	ИAX	1176 266 119	168x7 38x7 17x7
etapa	Elem Nº	Alim. pres Bar	Pres gota Bar	Perm flujo m3/hr	Perm Flux I/m2h	Beta	Perm sal SDT (ppm)	Conc. osm pres	CaSO4	Saturació SrSO4	n en Coi BaSO		Lang.
1-1 1-1 1-1 1-1 1-1 1-1	1 2 3 4 5 6 7	57,8 57,6 57,3 57,2 57,0 56,8 56,7	0,3 0,2 0,2 0,2 0,1 0,1 0,1	1,1 0,8 0,6 0,5 0,3 0,2 0,2	29,0 22,7 17,1 12,6 8,7 6,3 4,5	1,05 1,04 1,03 1,02 1,02 1,02 1,01	118,8 142,4 170,2 202,0 238,6 279,0 321,2	32,5 36,8 40,8 44,4 47,3 49,5 51,3	26 30 34 38 41 44	23 27 31 34 37 39 41	25 29 33 37 40 42 44	1 1 1 1 1 1	2,0 2,1 2,2 2,2 2,3 2,3 2,3
2-1 2-1 2-1 2-1 2-1 2-1 2-1	1 2 3 4 5 6 7	11,8 11,2 10,6 10,2 9,9 9,6 9,4	0,6 0,5 0,4 0,4 0,3 0,2 0,2	1,8 1,6 1,5 1,4 1,4 1,3	43,4 39,2 37,0 35,0 33,3 31,8 30,4	1,12 1,10 1,10 1,14 1,16 1,18 1,22	2,5 2,8 3,0 3,3 3,5 3,9 4,4	0,3 0,3 0,4 0,4 0,5 0,6 0,8	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	-1,4 -1,3 -1,2 -1,1 -0,9 -0,8 -0,6
2-2 2-2 2-2 2-2 2-2 2-2 2-2	1 2 3 4 5 6 7	9,0 8,6 8,3 8,0 7,8 7,6 7,5	0,4 0,3 0,3 0,2 0,2 0,1 0,1	1,4 1,3 1,2 1,1 1,1 1,0 0,9	34,1 32,0 30,0 28,1 26,1 24,0 21,4	1,13 1,10 1,15 1,17 1,19 1,21 1,24	4,7 5,0 5,5 6,1 6,8 7,9 9,4	0,9 1,0 1,2 1,4 1,7 2,1 2,6	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	-0,5 -0,4 -0,3 -0,2 -0,1 0,1 0,3
Etapa 1-1 2-1 2-2	NDP bar 17,7 9,0 6,6												

Los cálculos de rendimiento del producto están basados en el rendimiento nominal del elemento de membrana, funcionando con agua de alimentación de una calidad aceptable. Los resultados mostrados en los listados creados por este programa son estimaciones del rendimiento del producto. Ninguna garantía del producto o rendimiento del sistema es expresada o implícita, a menos que no sea proporcionada en una garantía separada firmada por un representante autorizado de Hydranautics. Los cálculos de la presión de alimentación aplicada son las mejores estimaciones para asistir al cliente en el dimensionamiento de la bomba de alta de alta presión y no son una garantía de la presión actual de operación durante la vida del producto. Las presiones calculadas contienen un margen de seguridad para asegurar que las bombas de alimentación sean apropiadamente dimensionadas basándose en la información proporcionada. El margen de seguridad incluye factores para un ratio normal de ensuciamiento de la membrana durante la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Los cálculos para el consumo de productos químicos son la vida del producto. Cos cálculos para el consumo de productos químicos son la vida del producto. Como la cantidad de reactivos químicos son para el ajuste de pH es dependiente del agua de alimentación y no es dependiente de la membrana, Hydranautics no garantiza el consumo de reactivos químicos so se requiere una garantía de sistema o producto, por favor póngase en contacto con representantes de Hydranautics. Las garantías no estándar o ampliadas, pueden resultar en precios diferentes a los precios cotizados anteriormente.

Programa O.I. licenciado a:

Cálculo creado por:

Proyecto: Caudal de Permeado: 629,33 m3/hr proyecto Caudal bomba alta pres: 1398,7 m3/hr Caudal agua cruda: 1340,6 m3/hr Presión Alim.: Tasa recuperación perm: 45,0 % 57,8 bar Temp. Agua Alim.: 28,0 C(82F) 8,1 pH Agua Alim.: Edad de las Membranas: 3,6 años Dosis Químico,ppm (100%) H2SO4 Disminución flux %/año: 7,0 % 0,0 0,80 Fouling factor: Incremento paso sales, 10,0

%/año:

Flux promedio: 14,4 lm2hr Tipo de Alimentación: Agua de mar - toma abierta

Etapa	Perm.	Cauda	al/tubo	Flux	Beta	Conc.&	Contra.	Elemento	Elem.	Arreglo
·	Caudal	Alim.	Conc.			Presi	iones	Tipo	Nο	•
	m3/hr	m3/hr	m3/hr	l/m2-hr		bar	bar	•		
1-1	629.4	8.3	4.6	14.4	1.01	56.6	0.0	SWC5	1176	168x7

	Agua cr	uda 1	Agua Al	im. 1	Permea	ido 1	Conc	. 1
lón	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l
Ca	442,0	22,0	424,1	21,2	0,87	0,0	770,3	38,4
Mg	1499,0	123,4	1438,2	118,4	2,95	0,0	2612,5	215,0
Na	12020,0	522,6	11571,4	503,1	113,77	0,6	20945,9	910,7
K	671,0	17,2	646,5	16,6	7,94	0,0	1169,0	30,0
NH4	0,1	0,0	0,1	0,0	0,00	0,0	0,2	0,0
Ва	0,006	0,0	0,006	0,0	0,000	0,000	0,010	0,0
Sr	6,362	0,1	6,104	0,1	0,013	0,000	11,088	0,3
CO3	21,5	0,7	20,9	0,7	0,02	0,0	37,9	1,3
HCO3	163,3	2,7	157,7	2,6	2,48	0,0	284,7	4,7
SO4	3056,0	63,7	2932,2	61,1	6,42	0,0	5326,1	111,0
CI	22157,0	625,0	21318,1	601,4	186,44	0,6	38607,6	1089,1
F	1,5	0,1	1,4	0,1	0,03	0,0	2,6	0,1
NO3	1,0	0,0	1,0	0,0	0,06	0,0	1,7	0,0
В	5,30	,	5,51	,	1,45	,	8,84	•
SiO2	1,0		1,0		0,01		1,7	
CO2	0,76		0,73		0,73		0,73	
TDS	40045,1		38524,3		322,4		69780,3	
nΗ	8.1		8 1		6.7		8.6	

	Agua cruda	Agua Alim.	Conc.
CaSO4 / Ksp * 100:	23%	22%	46%
SrSO4 / Ksp * 100:	20%	19%	41%
BaSO4 / Ksp * 100:	22%	21%	44%
Sat. SiO2:	1%	1%	1%
Indice Sat. de Langelier	1,40	1,37	2,36
Indice Sat. de Stiff & Davis	0,40	0,38	1,32
Fuerza iónica	0,79	0,76	1,38
Presión osmótica	29,5 bar	28,3 bar	51,3 bar

Los cálculos de rendimiento del producto están basados en el rendimiento nominal del elemento de membrana, funcionando con agua de alimentación de una calidad aceptable. Los resultados mostrados en los listados creados por este programa son estimaciones del rendimiento del producto. Ninguna garantía del producto o rendimiento del sistema es expresada o implicita, a menos que no sea proporcionada en una garantía del producto un representante autorizado de Hydranautics. Los cálculos de la presión de alimentación aplicada son las mejores estimaciones para a un el dimensionamiento de la bomba de alta de alta presión y no son una garantía de la presión actual de operación durante la vida del producto. Las presiones calculadas contienen un margen de seguridad para asegurar que las bombas de alimentación sean apropiadamente dimensionadas basándose en la información proporcionada. El margen de seguridad incluye factores para un ratio normal de ensuciamiento de la membrana durante la vida del producto. Los cálculos para el consumo de productos químicos son las vida del producto. Los cálculos para el consumo de productos químicos son proporcionados para la conveniencia y están basados en varias hipótesis acerca de la calidad y la composición del agua de alimentación. Como la cantidad de reactivos químicos necesarios para el ajuste de pH es dependiente del agua de alimentación y no es dependiente de la membrana, Hydranautics no garantiza el consumo de reactivos químico. Si se requiere una garantía de sistema o producto, por favor póngase en contacto con representantes de Hydranautics. Las garantías no estándar o ampliadas, pueden resultar en precios diferentes a los precios cotizados anteriormente. (27/37)

DOS PASOS & CONTRAPRES. PERM.(VARIABLE) PASO2

Programa O.I. licenciado a:

Cálculo creado por:

Proyecto: Caudal de Permeado: 521,08 m3/hr proyecto Presión Alim.: 11,8 bar Tasa recuperación perm: 90,0 % Temp. Agua Alim.: 28,0 C(82F) pH Agua Alim.: 9,5 Edad de las Membranas: 3,6 años NaOH Dosis Químico, ppm (100%) 2,5 Disminución flux %/año: 0,0 % Fouling factor: 1,00 Incremento paso sales, 0,0

%/año:

Flux promedio: 33,1 lm2hr Tipo de Alimentación: Agua de mar - toma abierta

Etapa	Perm.	Cauda	al/tubo	Flux	Beta	Conc.&	Contra.	Elemento	Elem.	Arreglo
	Caudal	Alim.	Conc.			Pres	iones	Tipo	Nο	
	m3/hr	m3/hr	m3/hr	l/m2-hr		bar	bar			
2-1	385,4	15,2	5,1	35,4	1,22	9,2	1,5	ESPAB MAX	266	38x7
2-2	135,8	11,4	3,4	27,9	1,24	7,3	0,0	ESPAB MAX	119	17x7

	Agua cı	uda 2	Agua A	lim. 2	Perme	ado 2	Conc	. 2
lón	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l	mg/l	meq/l
Ca	0,9	0,0	0,9	0,0	0,005	0,0	8,7	0,4
Mg	3,0	0,2	3,0	0,2	0,017	0,0	29,4	2,4
Na	113,8	4,9	116,8	5,1	3,182	0,1	1139,0	49,5
K	7,9	0,2	7,9	0,2	0,269	0,0	77,0	2,0
NH4	0,0	0,0	0,0	0,0	0,000	0,0	0,0	0,0
Ва	0,000	0,0	0,000	0,0	0,000	0,0	0,000	0,0
Sr	0,013	0,0	0,013	0,0	0,000	0,0	0,125	0,0
CO3	0,0	0,0	0,6	0,0	0,002	0,0	5,8	0,2
HCO3	2,5	0,0	2,9	0,0	0,140	0,0	27,6	0,5
SO4	6,4	0,1	6,4	0,1	0,044	0,0	63,8	1,3
CI	186,4	5,3	186,4	5,3	5,082	0,1	1818,7	51,3
F	0,0	0,0	0,0	0,0	0,001	0,0	0,2	0,0
NO3	0,1	0,0	0,1	0,0	0,012	0,0	0,5	0,0
В	1,45		1,45		0,39	·	10,96	
SiO2	0,0		0,0		0,000		0,1	
CO2	0,73		0,00		0,00		0,00	
TDS	322,4		326,4		9,15		3181,8	
На	6.7		9.5		8.3		10.5	

	Agua cruda	Agua Alim.	Conc.
CaSO4 / Ksp * 100:	0%	0%	0%
SrSO4 / Ksp * 100:	0%	0%	0%
BaSO4 / Ksp * 100:	0%	0%	0%
Sat. SiO2:	0%	0%	0%
Indice Sat. de Langelier	-4,46	-1,45	1,41
Indice Sat. de Stiff & Davis	-4,38	-1,37	1,34
Fuerza iónica	0,01	0,01	0,06
Presión osmótica	0,2 bar	0,3 bar	2,5 bar

Los cálculos de rendimiento del producto están basados en el rendimiento nominal del elemento de membrana, funcionando con agua de alimentación de una calidad aceptable. Los resultados mostrados en los listados creados por este programa son estimaciones del rendimiento del producto. Ninguna garantía del producto o rendimiento del sistema es expresada o implícita, a menos que no sea proporcionada en una garantía separada firmada por un representante autorizado de Hydranautics. Los cálculos de la presión de alimentación a picada son las mejores estimaciones para asistir al cliente en el dimensionamiento de la bomba de alta de alta presión y no son una garantia de la presión actual de operación durante la vida del producto. Las presiones calculadas contienen un margen de seguridad para asegurar que las bombas de alimentación sean apropiadamente dimensionadas basándose en la información proporcionada. El margen de seguridad para el consumo de productos químicos son la vida del producto. Los cálculos para el consumo de productos químicos son proporcionados para la conveniencia y están basados en varias hipótesis acerca de la calidad y l

DOS PASOS & CONTRAPRES. PERM.(VARIABLE)

			Caudal mezcla:		571,4	m3/hr
proyecto			Caudal de Permeado:	629,33	521,08	m3/hr
1398,7	578,9	m3/hr	Caudal agua cruda:		1340,6	m3/hr
57,8	11,8	bar	Recuperación:	45,0	90,0	%
	28,0	C(82F)	Recup. total sistema:		42,6	%
8,1	9,5		Edad de las Membranas:		3,6	años
0,0	2,5		Disminución flux %/año:	7,0	0,0	
			Fouling factor:	0,80	1,00	
			Incremento paso sales,	10,0	0,0	
			%/año:			
14,4	33,1	lm2hr	Tipo de Alimentación:	Agua de mar - t	toma abier	ta
	1398,7 57,8 8,1 0,0	1398,7 578,9 57,8 11,8 28,0 8,1 9,5 0,0 2,5	1398,7 578,9 m3/hr 57,8 11,8 bar 28,0 C(82F) 8,1 9,5 0,0 2,5	proyecto 1398,7 578,9 m3/hr 57,8 11,8 bar Recuperación: 28,0 C(82F) Recup. total sistema: 8,1 9,5 Edad de las Membranas: 0,0 2,5 Disminución flux %/año: Fouling factor: Incremento paso sales, %/año:	proyecto Caudal de Permeado: 629,33 1398,7 578,9 m3/hr Caudal agua cruda: 57,8 11,8 bar Recuperación: 45,0 28,0 C(82F) Recup. total sistema: 8,1 9,5 Edad de las Membranas: 0,0 2,5 Disminución flux %/año: 7,0 Fouling factor: 0,80 Incremento paso sales, 10,0 %/año: 10,0	proyecto Caudal de Permeado: 629,33 521,08 1398,7 578,9 m3/hr Caudal agua cruda: 1340,6 57,8 11,8 bar Recuperación: 45,0 90,0 28,0 C(82F) Recup. total sistema: 42,6 8,1 9,5 Edad de las Membranas: 3,6 0,0 2,5 Disminución flux %/año: 7,0 0,0 Fouling factor: 0,80 1,00 Incremento paso sales, 10,0 0,0 %/año: 3,6 0,0

**** LOS SIGUIENTES PARÁMETROS EXCEDEN LOS LÍMITES DEL DISENO: ***

Indice Langelier de saturación muy alto en Conc. (2,36)

Directrices generales para diseñar un sistema sistema de ósmosis utilizando membranas Hydranautics. Por favor consulte a Hydranautics para recomendaciones específicas fuera de las recomendaciones señaladas

Límites caudal de la Alim. y del Conc.

Diámetro elemento Caudal máx. de la Alim. Caudal mínimo de Conc. 75 gpm (283.9 lpm) 12 gpm (45.4 lpm) 8.0 pulg 8.0 pulg(Full Fit) 75 gpm (283.9 lpm) 30 gpm (113.6 lpm)

Factor Beta no debe superar 1.2 para las membranas convencionales

Límites de saturación para sales poco solubles en Conc.

Sal soluble Saturación BaSO4 6000% CaSO4 230% SrSO4 800% SiO2 100%

El Índ.de Sat.de Langelier para el Conc. no debe exceder1,8

Los lím. antes indicados aplican sólo si se utiliza un inhib.de incrust.efectivo. Sin inhibidor, la saturación en el Concentrado no debe superar 100%

Diseño de una IDAM de gran capacidad. Incorporación de últimos avances tecnológicos.

Máster en Ingeniería y Gestión del Agua

Curso 2012-2013

TUTOR:

Aitor Díaz Pérez

COMPONENTES:

Ernesto Madero Ceña

Mario Quintana Aroca

Juan José Romero Añover

Commons Reconocimiento, Nocomercial, Compartirigual, (by-nc-sa). Usted puede usar, copiar y difundir este documento o parte del mismo siempre y cuando se mencione su origen, no se use de forma comercial y no se modifique su licencia. Más información: http://creativecommons.org/licenses/by-nc-sa/3.0/

RESUMEN EJECUTIVO

1 INTRODUCCIÓN

El agua es el recurso indispensable para la vida, y en especial en Israel donde las fuentes de agua son limitadas y el problema del abastecimiento de agua es uno de los más severos que tiene que afrontar el Estado.

Israel es un referente internacional en los campos de la utilización eficiente de agua, así como por su gran calidad de los sistemas tecnológicos desarrollados alrededor de este recurso. Sin embargo, el balance de agua en Israel muestra un constante déficit a través de los años. La desalación del agua de mar constituye casi la solución única para Israel y sus países vecinos.

El proceso de desalación seleccionado para el este proyecto es la ósmosis inversa en dos pasos con sistema de recuperación energética del rechazo en primer paso.

La capacidad de producción se fija en 384.000 m³/día.

1.1 ¿Por qué una desaladora en Israel?

Se ha determinado el proyecto en Israel por los siguientes motivos:

- 1. Escasez constante de agua natural. Los recursos hídricos son escasos, limitados y se encuentran en continuo descenso.
- 2. Falta de precipitaciones. Debido sobre todo al cambio climático las lluvias en Israel han descendido en los últimos años.
- 3. Consumo doméstico. El volumen de consumo doméstico para uso público e industrial alcanza los 800-900 Mm³/año.
- 4. Crecimiento de la población. El continuo aumento de la población ha propiciado un incremento significativo en la demanda de agua.

Año	2005	2006	2007	2008	2009	2010	2011	2012	2013
Población	6.990	7.116	7.243	7.412	7.552	7.695	7.836	7.928	8.002
Incremento	-	2%	1.70%	2%	1.90%	1.90%	1.80%	1.17%	1%

Tabla 1: Crecimiento demográfico Israel

2 OBJETIVO

El objetivo de este proyecto es el diseño, dimensionamiento, suministro, instalación, puesta en marcha y mantenimiento de una instalación desaladora de agua de mar de grandes dimensiones junto con los últimos avances tecnológicos en desalación asociados. También se realizará un análisis comparativo de la planta utilizando centros de presión o *Common Rail*, sistema de bombeo de alta presión puntero utilizado únicamente en las plantas desaladoras de Israel. Todo ello con el propósito de conseguir una planta eficiente energéticamente e innovadora al mismo tiempo.

3 <u>DESCRIPCIÓN GENERAL</u>

El agua bruta es captada mediante dos torres de toma abierta en el lecho marino y es conducida a una cámara de captación donde es bombeada a cabecera de planta. Una vez allí, el agua se divide en dos trenes y comienza el pretratamiento químico mediante la dosificación de distintos compuestos. Posteriormente es filtrada mediante filtros de anillas y un proceso de ultrafiltración, mejorando la calidad del agua producto y garantizando la total protección de las membranas de ósmosis inversa.

Una vez finalizado el pretratamiento, mediante un bombeo de alta presión por medio de 28 bombas se impulsa el agua a través de los bastidores de ósmosis inversa. El paso total por el proceso de ósmosis inversa consta de 28 respectivas líneas, 14 por tren para el primer paso, donde además consta de un sistema de recuperación de energía tipo ERI (Energy Recovery Inc.) y de 14 líneas, 7 por tren, para el segundo paso.

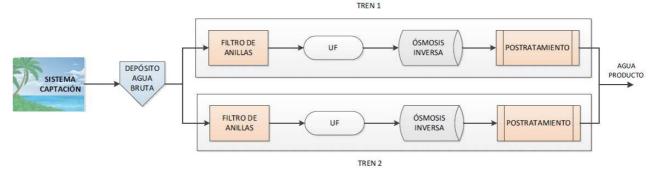


Figura 1: Configuración en dos trenes

El permeado o agua producto es finalmente tratada por un proceso de remineralización que consiste en corregir tanto el pH como el equilibrio cálcico - carbónico, dosificando CaCO₃ y CO₂, para que cumpla la normativa aplicable y se garantice su calidad para su uso como agua potable.

El agua rechazo o salmuera es conducida a través de un emisario submarino y devuelta al mar mediante un sistema de difusores.

3.1 Datos básicos de diseño

La siguiente tabla muestra los principales aspectos considerados para el diseño de la planta que se justificarán a lo largo del presente documento:

Caracter	Valores	
Número de pasos		2
Número de etapas	Primer paso Segundo paso	1 2
Split variable	Máximo Mínimo	8 % 30 %
Factor de conversión	Primer paso Segundo paso	45 % 90 %
Tipo captación	Toma abierta	
Pretratamiento físico	A la OI A la ultrafiltración	Ultrafiltración Filtros de anillas
Pretratamiento químicos Postratamiento Postratamiento		NaClO, FeCl ₃ , Na ₂ S ₂ O ₅ , NaOH, Antiincrustante CaCO ₃ , CO ₂
Remineralización		Lechos de calcita

Tabla 2: Resumen planta

La planta se dividirá en dos trenes simétricos de producción para facilitar su explotación y servir de garantía frente a cualquier posible incidente.

4 CAPTACIÓN

La captación se realiza mediante dos torres de toma situadas a 1500 metros de la costa y sobre un fondo rocoso o de arenas gruesas, para minimizar la entrada de sustancias sedimentables y la presencia de algas. El punto de entrada de agua a la torres se encuentra a 4 m sobre el fondo marino.

Las torres se diseñan de forma que las líneas de corriente del agua captada sean horizontales. Además, para evitar la inmovilización y reducir el arrastre de los peces, la velocidad de aproximación a las rejas debe ser inferior a 0,15 m/s y el flujo totalmente laminar.

Existe un sistema de dosificación de hipoclorito en las torres de toma así como un sistema de inyección de aire a presión para evitar la entrada de peces, algas y medusas a las torres de toma.

Una vez el agua llega a la costa, es captada por una cámara de captación y posteriormente bombeada a un depósito de agua bruta desde donde partirán los dos trenes.

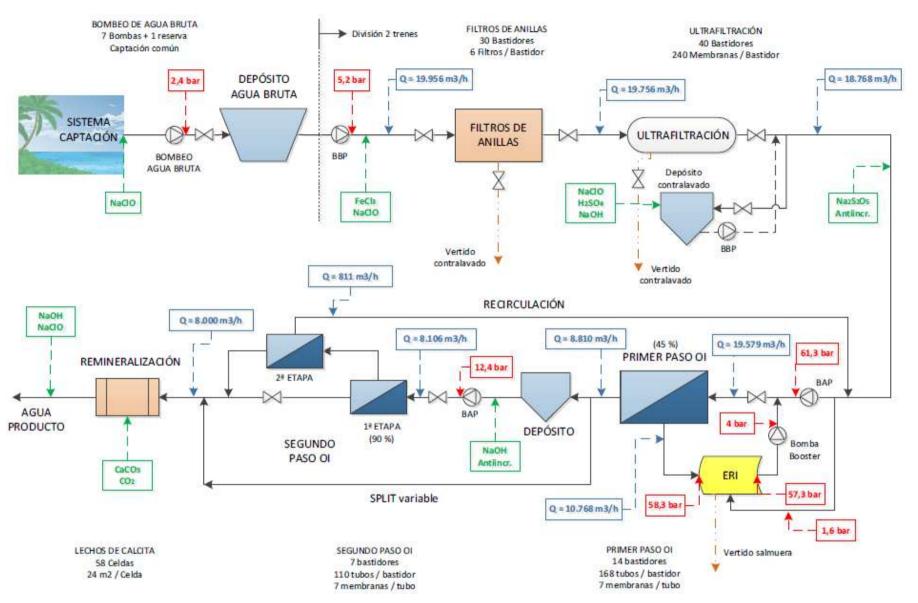


Figura 2: Esquema general de la planta

5 FILTROS DE ANILLAS

Los filtros de anillas son sistemas de filtración que se utilizan como tratamiento previo a la ultrafiltración y a la ósmosis inversa. Prácticamente no eliminan turbidez y no realizan una filtración en profundidad.

5.1 Modo filtración

Durante el proceso de filtración las anillas que se encuentran en su interior están fuertemente comprimidas en forma conjunta por el resorte y la presión diferencial, de esta forma se fuerza al agua a fluir a través de los canales que se forman entre las anillas ranuradas.

5.2 Modo contralavado

Durante el contralavado se forma una contrapresión que provoca que el pistón suba y libere las anillas comprimidas. De forma simultánea, múltiples boquillas inyectan chorros tangenciales sobre las anillas liberadas, provocando que giren y liberen los sólidos retenidos, los que son derivados hacia el exterior a través del drenaje. Este proceso se realiza con agua limpia filtrada, o con agua externa en los casos en los que se considere necesario o más rentable.

Las características de los filtros de anilla utilizados se muestran a continuación:

Caudal de entrada a UF	948.302,03 m³/día
Pérdidas	1,00%
Caudal de entrada F.Anillas	957.880,84 m³/día
Caudal de entrada F.Anillas	39.991,70 m ³ /h
Tipo de filtro	GALAXY SKS 10''
N° Filtros por bastidor	6 uds
Flujo diseño	1320 m³/h
N° bastidores	30,24 bastidores
N° bastidores adoptado	30 bastidores
N° total filtros	180 filtros
Superficie de filtrado	14.080 cm ² /filtro
Superficie de filtrado total	2.534.400 cm ²
Pérdida de carga	0,5 bar

Tabla 3: Características de los filtros de anillas

6 <u>ULTRAFILTRACIÓN</u>

La ultrafiltración es un proceso físico de separación de partículas, donde el agua y algunos solutos pasan a través de una serie de membranas por efecto de una presión hidrostática.

Con la operación de ultrafiltración se consigue eliminar materia en suspensión, macromoléculas de gran tamaño, materia coloidal o microorganismos. Sin embargo, no es posible eliminar iones o materia disuelta como ocurre en la ósmosis inversa. Por tanto su misión en la línea de proceso es la protección de las membranas de ósmosis inversa, y preservar el buen estado de las mismas para que funcionen de manera adecuada la mayor cantidad de tiempo posible.

El agua procedente de la cántara de captación, tras ser prefiltrada en los filtros de anillas, pasará a las membranas de ultrafiltración, donde será filtrada de nuevo para conseguir las condiciones que requieren las membranas de ósmosis.

Para este proyecto se han elegido las membranas del modelo Hydracap 60, de la casa comercial Hydranautics, siendo las más adecuadas ya que permiten operar con mayores flujos los sistemas de ósmosis inversa y de UF, aumentando los intervalos entre lavados.

6.1 Descripción de los lavados

Un aspecto muy importante a tener en cuenta en el diseño de la ultrafiltración son los continuos lavados que han de realizarse a fin de mantener su rendimiento y buen funcionamiento. Cada cierto tiempo se produce el ensuciamiento y consiguiente atascamiento de las membranas debido a acumulación de sólidos en su superficie, y por tanto, han de llevarse a cabo una serie de lavados con agua y aire, con el fin de mantener un caudal de producción estable.

ULTRAFILTRACIÓN				
Caudal entrada a OI	900,887 m³/día			
Caudal de lavado ultrafiltración	5%			
Caudal de diseño	948.302 m³/día			
Caudal de diseño	39.512 m³/hora			
Flujo de diseño	90 l/m²*h			
Superficie membranas	46 m²			
Número membranas	9.545 uds			
Número de trenes	2			
Número de bastidores	20 / tren			
Número de membranas	240 / bastidor			

Tabla 4: Parámetros de diseño ultrafiltración

7 TRATAMIENTOS QUÍMICOS

Una gran desaladora como esta requiere la captación de un gran caudal de agua que previamente deberá ser tratado para proteger toda la instalación posterior. Debido a esto es necesario realizar pretratamientos físicos y químicos.

El objetivo de este pretratamiento consiste en adecuar las características del agua a las necesidades del proceso, para conseguir un funcionamiento óptimo de la planta. La dosificación de los reactivos químicos para el tratamiento del agua se realizará de un modo eficiente.

7.1 Desinfección

El primer pretratamiento utilizado consiste en una cloración del agua de mar mediante la dosificación de hipoclorito sódico (NaClO), debido a que la actividad biológica es muy reducida por la filtración natural del terreno. Con ello se consigue oxidar la materia orgánica que contenga el agua bruta e interrumpir los posibles desarrollos bacteriológicos tanto en las conducciones y equipos como en las membranas, y que puedan provocar daños en equipos.

Aunque la experiencia con agua de mar indica una mayor efectividad cuando se dosifica de forma discontinua a bajas dosis (orden de 2 ppm), se ha previsto una dosis de choque máxima de 5 ppm.

Una vez finalizado el proceso, se realiza una pequeña desinfección en el agua producto, por lo que se aplicará una dosificación en continuo de 0,5 ppm tanto en la línea de proceso como el contralavado de ultrafiltración.

DESINFECCIÓN				
	Cloración agua de mar	Desinfección agua producto		
Reactivo	Hipoclorito sódico (NaClO)	Hipoclorito sódico (NaClO)		
Modo de aplicación	Choques	Continuo		
Caudal a tratar	957.880,84 m³/día	384.000 m³/día		
Período de funcionamiento	6 horas	24 horas		
Dosificación	5 ppm	0,5 ppm		
Densidad del producto (Riqueza)	1,24 kg/l (12 %)	1,24 kg/l (12 %)		
Consumo	8.046,71 l/día	1.290 l/día		
Bombas en operación	2 + 1 reserva	2 + 1 reserva		
Caudal unitario adoptado	700 l/h	30 l/h		
Autonomía depósito almacenamiento	7 días	7 días		
Volumen depósito adoptado	60 m ³	10 m ³		

Tabla 5: Datos dosificación Hipoclorito sódico

7.2 Coagulación - Floculación

El objetivo de la coagulación es la desestabilización eléctrica de los coloides y la reagrupación de éstos y de las pequeñas partículas existentes en el agua, de manera que se facilite su posterior separación. El coagulante a utilizar en la planta es el Cloruro Férrico (FeCl₃), basándose el funcionamiento de este producto en la formación del correspondiente hidróxido de hierro y la generación de una cierta acidez. Con el objetivo de anular cargas y favorecer la aglomeración de partículas para una mayor facilidad de eliminación en los filtros de anillas y ultrafiltración, se dosificará 4 ppm en continuo.

Así mismo, la planta cuenta con una instalación de tratamiento de efluentes, tanto para aguas de lavado de los filtros de anillas como de ultrafiltración. Por tanto se aplicará una dosificación de este coagulante en estos lavados.

COAGULACIÓN - FLOCULACIÓN				
Reactivo	Cloruro Férrico (FeCl ₃)			
Modo de aplicación	Continuo			
Caudal a tratar	976.880,84 m³/día			
Período de funcionamiento	24 horas			
Dosificación	4 ppm			
Densidad del producto (Riqueza)	1,4 kg/l (40 %)			
Consumo	6.842,01 l/día			
Bombas en operación	2 + 1 reserva			
Caudal unitario	142,54 l/h			
Autonomía depósito almacenamiento	7 días			
Volumen depósito adoptado	50 m ³			

Tabla 6: Datos dosificación Cloruro Férrico

7.3 Reducción de oxidantes

Como ya se ha comentado, el primer pretratamiento a realizar es la cloración del agua, que después se filtra y puede contener cloro residual libre, por lo que debe ser eliminado anteriormente al paso por las membranas, ya que, dicho oxidante degradaría irreversiblemente las membranas.

Para llevar a cabo la decloración y poder preservar la integridad de las membranas se utilizará un producto químico reductor, que en este caso es el Metabisulfito sódico ($Na_2S_2O_5$), producto sólido que se disocia en el agua formando Bisulfito Sódico ($NaHSO_3$).

El bisulfito sódico es un agente capaz de reducir el ácido hipocloroso residual a iones cloruro, produciéndose a la vez la oxidación del bisulfito a bisulfato. Se realizará una dosificación de choques de 10 ppm.

REDUCCIÓN DE OXIDANTES				
Reactivo	Bisulfito sódico (NaHSO ₃)			
Modo de aplicación	Choques			
Caudal a tratar	939.794,42 m³/día			
Período de funcionamiento	6 horas			
Dosificación	10 ppm			
Densidad del producto	0,05 kg/l			
Consumo	46.989,72 l/día			
Bombas en operación	2 + 1 reserva			
Caudal unitario adoptado	4.000 l/h			
Autonomía depósito almacenamiento	4 días			
Volumen depósito adoptado	190 m ³			

Tabla 7: Datos dosificación Bisulfito sódico

7.4 Antiincrustantes

En los sistemas de OI existen riesgos de precipitación de sales que pueden reducir el rendimiento de la instalación. Cuando la concentración de una sal supera su solubilidad puede producirse la precipitación. Comenzarán a formarse núcleos de cristales, los cuales catalizan la formación de más cristales en su superficie.

Los antiincrustantes son muy efectivos en la prevención del ensuciamiento de membranas de OI debido a la formación de incrustaciones, usados a pequeñas dosis detienen el proceso de precipitación al inhibir el crecimiento de estos cristales de sal. Su función es la de mejorar la solubilidad de algunas sales y prevenir su precipitación.

Se dosificará un dispersante cuya acción es impedir la formación de redes cristalinas, manteniendo a los iones en dispersión y permitiendo sobrepasar el límite de los productos de solubilidad de dichas sales. Se realizará una dosificación en continuo de 1 ppm, y el punto de dosificación se realizará antes de cada paso de la OI, para evitar, que el producto no disuelto correctamente, pase a las membranas.

ANTIINCRUSTANTES						
	Previo al Primer paso OI	Previo al Segundo paso Ol				
Modo de aplicación	Continuo	Continuo				
Caudal a tratar	939.794,42 m³/día	389.075 m³/día				
Período de funcionamiento	24 horas	24 horas				
Dosificación	1 ppm	1 ppm				
Densidad del producto	1,36 kg/l	1,36 kg/l				
Consumo	691,03 l/día	286,08 l/día				
Bombas en operación	2 + 1 reserva	2 + 1 reserva				
Caudal unitario adoptado	15 l/h	15 l/h				
Autonomía depósito almacenamiento	7 días	7 días				
Volumen depósito adoptado	5 m ³	5 m ³				

Tabla 8: Datos dosificación Antiincrustantes

7.5 Regulación del pH

En instalaciones con un segundo paso de OI es necesaria, a la entrada de éste, un incremento del pH del agua de entrada al segundo paso para facilitar la disociación del boro aumentando así su rechazo en las membranas de ósmosis inversa. Otra función importante es evitar la precipitación de carbonato cálcico en las membranas. Si bien no se estima que existan problemas a este respecto, debe diseñarse un sistema de dosificación con hidróxido de sodio en previsión de posibles problemas o cambios bruscos en la composición del agua de aporte. En este caso se ha diseñado una dosificación de choques de 10 ppm.

Igual que en el caso del hipoclorito sódico, se realizará una pequeña dosificación de NaOH, en caso de que sea necesario, al final del proceso, en el agua producto.

REGULACIÓN pH				
Reactivo	Hidróxido sódico (NaOH)			
Modo de aplicación	Choques			
Caudal a tratar	389.075 m³/día			
Período de funcionamiento	6 horas			
Dosificación	10 ppm			
Densidad del producto (Riqueza)	2,13 kg/l (100%)			
Consumo	456,70 l/día			
Bombas en operación	2 + 1 reserva			
Caudal unitario adoptado 50 l/h				

Tabla 9: Datos dosificación Hidróxido sódico

8 BOMBEOS

8.1 Bombeo a depósito de agua bruta

Las bombas de captación han de impulsar el agua bruta desde la cántara de captación hasta el depósito de regulación situado al principio de la planta. En las conducciones se utilizará tubería de PRFV, con una presión nominal de 10 bares, al igual que el resto de conducciones de la planta, gracias a su elevada resistencia a la corrosión y su alta resistencia química.

8.2 Bombeo a baja presión

Las bombas de baja presión serán las encargadas de transportar el agua desde el depósito de regulación de agua bruta hasta los filtros de anillas.

8.3 Bombeo de alta presión

Las bombas de alta presión son las encargadas de impulsar la solución a tratar hacia las membranas de OI a la presión requerida por estas. En este bombeo es donde se consume la mayor parte de la energía que se necesita en una planta de OI.

Además se dotará a las bombas de variadores de frecuencia, que permiten que la bomba ajuste su caudal y presión a las demandas del proceso, en función de la temperatura de operación y del grado de ensuciamiento de las membranas. Su uso es fundamental para tener en cuenta épocas de verano o épocas de invierno, donde la temperatura es diferente.

8.4 Bombas Booster

Parte del caudal de alimentación al primer paso de la ósmosis se deriva a un sistema de recuperación de energía (ERI) mientras que la alimentación restante es impulsada por las bombas de alta presión. Durante este proceso la salmuera sufre una pérdida de carga tanto en las membranas como en las tuberías y válvulas que es preciso compensar. Con este objetivo se dispone una bomba booster que impulsa un caudal de agua de mar ligeramente inferior al de la salmuera de rechazo y que aporta la diferencia de presión necesaria. De este modo se consigue que el caudal a impulsar por las bombas de alta presión se reduzca casi a la mitad, disminuyéndose considerablemente el consumo energético de la planta.

8.5 Bombas de agua producto

Finalmente se dispondrán unas bombas que impulsarán el agua producto a los depósitos de almacenamiento, para su posterior suministro hacia la red de distribución.

TABLA RESUMEN BOMBEOS							
	Agua Bruta Baja Presión A.P. Paso 1 A.P. Paso 2 Booste						
Caudal bombeo	39.912 m ³ /h	39.912 m ³ /h	17.621 m³/h	16.211 m ³ /h	21.537 m ³ /h		
Número de bombas	7 + 1 reserva	14 + 1 reserva	28 + 1 reserva	14 + 1 reserva	28 + 1 reserva		
Caudal unitario	5.702 m ³ /h	2.850 m ³ /h	629 m³/h	1.158 m³/h	769 m³/h		
Altura manométrica	24 m	52 m	603 m	132 m	40 m		
Potencia motor	500 Kw	600 Kw	1.500 Kw	600 Kw	110 Kw		
Rendimiento motor	95 %	95 %	95 %	95 %	95 %		
Rendimiento bomba	85 %	85 %	85 %	85 %	85 %		

Tabla 10: Datos bombeos

9 SISTEMAS DE RECUPERACIÓN DE ENERGÍA - ERI

Uno de los principales problemas de la desalación ha sido tradicionalmente, el gran consumo de energía necesario para llevar a cabo el proceso de OI. Por este motivo el desarrollo de sistemas de recuperación de energía ha sido uno de los factores claves en la evolución de esta tecnología, empleados para reducir el consumo eléctrico de las bombas de alta presión. Con ello se permite aprovechar la presión del rechazo del primer paso, que se transmite a la alimentación de las membranas.

Esta tecnología aprovecha la gran presión del agua de rechazo generada en la ósmosis para devolverla, en gran parte, al agua de entrada y así disminuir la cantidad de energía necesaria para alcanzar las grandes presiones de entrada a la ósmosis.

El bombeo de alta presión está dispuesto conjuntamente y en paralelo con un sistema de recuperación dinámica de presión, que aprovecha la energía residual del agua de rechazo de cada tren para transmitirla a una parte del agua de alimentación.

Cada uno de estos sistemas está compuesto por un cilindro cerámico rotatorio que gira a 1.200 rpm, y que contiene las cámaras isobáricas en las que la salmuera, por desplazamiento positivo, impulsa al agua marina filtrada hacia la entrada de la ósmosis inversa, previo paso por la bomba Booster que compensa las que se producen en el circuito.

RECUPERACIÓN DE ENERGÍA			
Caudal total de salmuera 21.537 m³/h			
Número de cámaras por línea	12 uds		
Número de cámaras en operación	336 uds		
Caudal máximo de salmuera/cámara	65 m³/h		
Máximo porcentaje de mezcla	1 %		

Tabla 11: Datos diseño ERI

10 ÓSMOSIS INVERSA

10.1 Datos generales de diseño

Uno de los objetivos del proceso será la alta eficiencia de remoción de Boro. Este aspecto condicionará de manera importante el diseño de ósmosis inversa en la utilización de dos pasos. Además, parte del caudal producto del primer paso se mezclará con el caudal procedente del segundo paso (Split) y el rechazo del segundo paso se recirculará a cabeza de proceso.

DISEÑO ÓSMOSIS INVERSA: CONFIGURACIÓN EN DOS PASOS				
PRIMER PASO SEGUNDO PAS				
Nº de bastidores	28	14		
Nº de etapas	1	2		
Nº de tubos de presión por bastidor	168	76 (1ª etapa) y 34 (2ª etapa)		
Nº de membranas por tubo	7	7		
Nº de membranas por bastidor	1.176	770		
Tipo de membranas	SWC5 (Hydranautics)	ESPAB MAX (Hydranautics)		
Conversión	45%	90%		
Presión	1000 psi	300 psi		
	Split variable (8-30%)			

Tabla 12: Diseño Ósmosis Inversa: Configuración en dos pasos

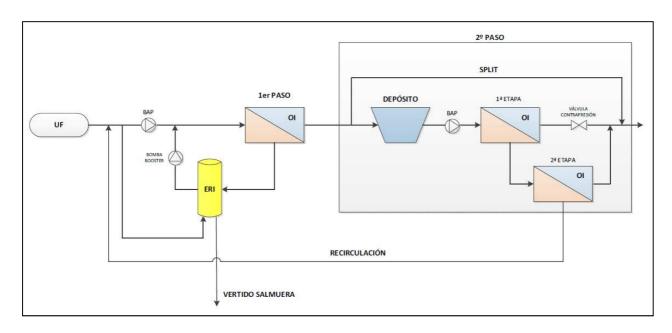


Figura 3: Esquema de OI

Teniendo en cuenta el caudal de alimentación al primer paso y el agua producto del segundo paso se tiene una conversión global del proceso del 42,62 %.

Las características de diseño más importantes para ambos pasos se detallan a continuación:

PRIMER PASO				
Flujo específico	14	l/m²/h		
Caudal producto	571,4	m³/h		
Superficie membrana:	37	m²		
N° membranas/tubo	7	uds.		
N° tubos adoptados	168	uds.		
N° total de membranas	32.928	uds.		

Tabla 13: Parámetros de diseño Primer Paso

SEGUNDO PASO				
Flujo específico	37	l/m²/h		
Caudal producto	1.142,9	m³/h		
Superficie membrana:	40	m ²		
N° membranas/tubo	7	uds.		
N° tubos adoptados	110	uds.		
N° total de membranas	10.780	uds.		

Tabla 14: Parámetros de diseño Segundo Paso

10.2 Simulaciones

Una vez hecho el prediseño para conocer el número de membranas necesarias en cada paso, se utilizó *IMS Design* para conocer la efectividad del proceso en distintos escenarios. Estos escenarios han tenido en cuenta tanto la vida de las membranas (0-3,6 años) como el rango de temperaturas de trabajo del proceso (16°-28°).

Temperatura	Edad membranas	TDS (ppm)	P _{BAP} (bar)	Boro (ppm)	pH 2 Paso	P _{BAP 2 paso} (bar)	[Cl] (ppm)	SPLIT %
16	3,6	57,49	61,30	0,47	8,10	12,20	33,11	25,00
10	0	51,31	57,30	0,38	8,10	11,20	29,56	30,00
22	3,6	41,46	59,00	0,49	9,00	12,40	23,77	13,00
22	0	54,58	56,00	0,49	8,80	10,70	31,40	24,00
24	3,6	36,51	58,50	0,49	9,20	12,40	20,91	10,00
24	0	48,12	55,70	0,49	9,00	11,00	27,64	19,00
28	3,6	36,75	57,80	0,49	9,50	11,80	21,06	8,00
20	0	45,88	55,50	0,48	9,40	10,70	26,36	15,00

Tabla 15: Simulaciones Ósmosis Inversa

11 REMINERALIZACIÓN

11.1 Datos generales de diseño

Para la remineralización del agua producto se ha decidido utilizar lechos de calcita con dosificación de CO_2 . Los condicionantes más importantes a la hora de diseñar los filtros se detallan en la tabla siguiente:

Parámetro	Valor	Unidades
Caudal a tratar	384.000	m³/d
Caudal a tratar	16.000	m³/h
Dureza deseada en agua producto	8	°F
Relación CaCO3/°F	8,50	ppm
Dosis Ca(CO ₃) ₂	68	ppm
Dosis CO ₂	29,92	ppm
Consumo de Ca(CO ₃) ₂	1.088	kg/h
Consumo de Ca(CO ₃) ₂	26.112	kg/día

Tabla 16: Condicionantes iniciales lechos de calcita

Una vez tenidos en cuenta todos los condicionantes anteriores y teniendo en cuenta las limitaciones constructivas de estos equipos se tiene el siguiente dimensionamiento.

Parámetro	Valor	Uds
Anchura	3	m
Longitud	8	m
Área por celda	24	m ²
Velocidad ascensional	11,5	m/h
Superficie total	1.391,30	m ²
Nº de celdas necesarias	57,97	uds
N° de celdas adoptadas	58	uds
Caudal por celda	275,86	m³/h

Tabla 17: Número de celdas en lechos	de
calcita	

Parámetro	Valor	Uds
Tiempo de contacto	10	min
Volumen de celda necesaria	45,98	m³
Altura de celda	1,92	m
Altura de celda adoptada	2	m

Tabla 18: Altura en lechos de calcita

Por tanto, al existir dos trenes en este proceso también, se tendrían 29 celdas en cada tren.

12 VERTIDO

Se construirán dos tuberías de vertido de 2000 metros desde la línea de costa seguidas de un tramo difusor cada una con varios elevadores y una boquilla por elevador.

Estas boquillas dispararán la salmuera con una inclinación de 60° formando una parábola sobre la horizontal. El agua en su trayecto se irá mezclando con el caudal circundante diluyendo la concentración de sales.

Los difusores se dispondrán a una profundidad aproximada de 20 metros para conseguir una presión de 1-2 bares necesaria y una correcta dilución de la salmuera.

El material de la tubería será HDPE y el diámetro se ha estimado teniendo en cuenta una velocidad en la tubería máxima de 1 m/s y el caudal máximo de rechazo (mínimo Split) para lo que se necesita un diámetro de 2000 mm en cada una de las dos conducciones.

13 ESTUDIO DE EXPLOTACIÓN

El resumen de los costes de explotación de la planta con un consumo específico de 3,80 kwh/m³ se resume en el cuadro siguiente:

Costes de explotación					
Sin incluir	energía	Incluyendo energía			
Anual	12.202.643,45 €	Anual	60.321.120,23 €		
Por metro cúbico	0,10 €	Por metro cúbico	0,48 €		
Parte Fija	34,89%	Parte Fija	7,03%		
Parte Variable	65,11%	Parte Variable	92,97%		

Tabla 19: Resumen de costes de explotación

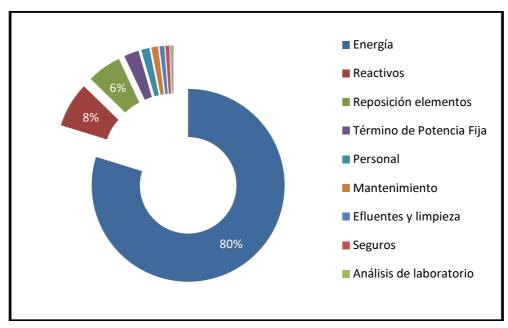


Figura 4: Distribución de costes de explotación

14 ANÁLISIS COMPARATIVO DEL USO DE CENTROS DE PRESIÓN

Los centros de presión, o *Common Rail*, son un sistema de bombeo de alta presión en el que se utiliza un menor número de bombas para alimentar a los bastidores de ósmosis inversa. En vez de utilizar una bomba por línea como sucede en el sistema convencional, se utiliza un número menor de bombas con una mayor capacidad de bombeo que impulsan el agua contra un colector común de alta presión desde donde se reparte el caudal a los distintos bastidores. De esta forma se consigue un ahorro energético, debido sobre todo a que el rendimiento de las bombas instaladas en el centro de presión es mayor que el rendimiento de las bombas instaladas por separado en el sistema convencional. Además, se reduce en gran medida el coste de inversión fruto de un menor número de sistemas auxiliares asociados a cada bomba. Este tipo de sistemas son parte de los últimos avances tecnológicos en el mundo de la desalación. Aunque su uso tiene ventajas e inconvenientes, en Israel, un país puntero y referente a nivel mundial en desalación, es la última tendencia y por esta razón se ha llevado a cabo un análisis comparativo entre el uso o no de estas configuraciones.

A continuación se muestra un esquema de la planta, tal y como se encuentra configurada y el esquema de cómo quedaría la planta si se utilizasen centros de presión. El esquema también se extrapolaría al segundo paso de ósmosis inversa.

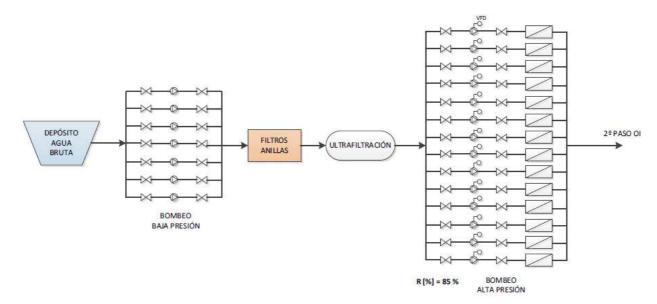


Figura 5: Configuración de primer paso de OI convencional (sin centros de presión)

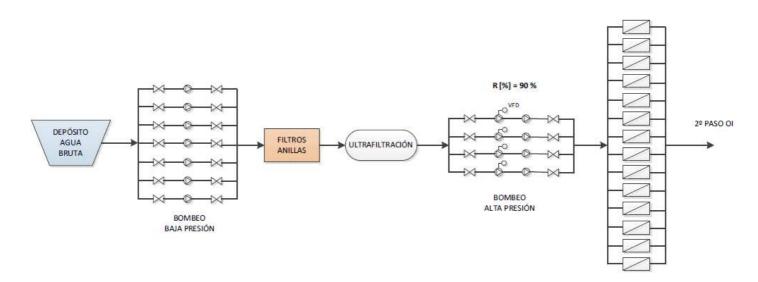


Figura 6: Configuración de primer paso de OI utilizando centros de presión (Common Rail)

El rendimiento estimado para las bombas del sistema convencional es un 85%. Utilizando centros de presión, se puede aumentar este rendimiento como mínimo hasta el 90% para las bombas que alimentan el colector común.

Lo mismo ocurre con el sistema de recuperación de energía, en lugar de que cada bastidor disponga de su propio sistema de recuperación, se recoge todo el rechazo y se lleva a un mismo colector donde se encuentra un único sistema de recuperación energética compuesto por todos los ERI del sistema convencional.

A continuación se exponen las ventajas e inconvenientes de usar centros de presión en lugar de un sistema tradicional, como se ha utilizado en el proyecto.

Ventajas

- Reducción del consumo específico de energía de la planta (de un 3,79 kwh/m³ a un 3,62 kwh/m³)
- Reducción de los costes totales del agua (de 0,48 €/m³ a 0,46 €/m³)

- Máxima eficacia en operación y simplicidad de mantenimiento
- Reduce costes de inversión. Se reduce considerablemente el número de bombas en operación y por consiguiente, el sistema de válvulas, control y otros elementos asociados a esas bombas (de 28 bombas de alta presión en primer paso, 14 bombas en segundo paso y 28 bombas booster se pasa a 4 bombas de alta presión en primer y segundo paso y 4 bombas booster).
- Mayor rendimiento de las bombas: de 85% a 90% o superiores

Inconvenientes

- Si falla una bomba, es necesario detener un número de bastidores proporcional al número total que se dispongan
- La secuencia de arrangue es más complicada:

Sistema tradicional:

Se instalan las bombas, se arrancan y poco a poco se ajustan los parámetros.

Centros de presión:

Al estar todas las bombas conectadas y actuar todo como un mismo sistema presurizado, el arranque o parada de cada una de las bombas es más complicado, ya que todas las bombas se encuentran bombeando contra un colector común y por tanto, presurizado en el momento de querer arrancar una nueva bomba.

- Las alarmas y las paradas pueden generar más problemas. Una alarma en cualquier parte del sistema hace que sea necesario parar por completo todo el bombeo. Al no encontrarse sectorizado, es más difícil saber dónde está el problema y solucionarlo por partes.
- Si una de las bombas del sistema tradicional se estropea sólo es necesario detener la producción correspondiente a esa línea. En cambio, la parada de una de las bombas del sistema *Common Rail* significaría la parada de un número de bastidores proporcional a ese bombeo. Por ejemplo, en caso de contar con cuatro bombas, sería necesario parar una cuarta parte de los bastidores totales.

COSTES VARIABLES:

SIN CENTROS DE PRESION

CON CENTROS DE PRESION

	€/AÑO	€/DIA
Costes Energéticos	48.118.477	145.814
TOTAL CON ENERGÍA	56.987.855	172.690

	€/AÑO	€/DIA
Costes Energéticos	45.930.368	139.183
TOTAL CON ENERGÍA	54.799.746	166.060

COSTE TOTAL DE EXPLOTACIÓN CON ENERGÍA:

Ejecución material:

Costes fijos (€/día)	12.837
Costes fijos (€/año)	4.236.337
Costes variables (€/día)	172.690
Costes variables (€/año)	56.987.855
Costes de explotación (€ /año)	61.224.192
Costes de explotación (€ /m3)	0,483

Ejecución material:

Costes fijos (€/día)	12.837
Costes fijos (€/año)	4.236.337
Costes variables (€/día)	166.060
Costes variables (€/año)	54.799.746
Costes de explotación (€ /año)	59.036.083
Costes de explotación (€ /m3)	0,466